树的直径-c++

article/2025/10/6 23:57:26

题目
实验室里原先有一台电脑(编号为1),最近氪金带师咕咕东又为实验室购置了N-1台电脑,编号为2到N。每台电脑都用网线连接到一台先前安装的电脑上。但是咕咕东担心网速太慢,他希望知道第i台电脑到其他电脑的最大网线长度,但是可怜的咕咕东在不久前刚刚遭受了宇宙射线的降智打击,请你帮帮他。
在这里插入图片描述
提示: 样例输入对应这个图,从这个图中你可以看出,距离1号电脑最远的电脑是4号电脑,他们之间的距离是3。 4号电脑与5号电脑都是距离2号电脑最远的点,故其答案是2。5号电脑距离3号电脑最远,故对于3号电脑来说它的答案是3。同样的我们可以计算出4号电脑和5号电脑的答案是4.

Input
输入文件包含多组测试数据。对于每组测试数据,第一行一个整数N (N<=10000),接下来有N-1行,每一行两个数,对于第i行的两个数,它们表示与i号电脑连接的电脑编号以及它们之间网线的长度。网线的总长度不会超过10^9,每个数之间用一个空格隔开。

output
对于每组测试数据输出N行,第i行表示i号电脑的答案 (1<=i<=N).

Sample inuput
5
1 1
2 1
3 1
1 1

Sample output
3
2
3
4
4

解题思路
1.最简单的想法是,对于每个点,都用一次dfs遍历,然后找到该点的最远距离的点,但是太慢了。

2.我们采用求树直径的方法,大概意思是,任意一个起点,我们对他进行dfs,然后找到离它最远的那个叶子节点1,然后从叶节点1再进行遍历,找到离他最远的叶子节点2。那么,叶1和叶2之间的距离就是树的直径,即这棵树内两点距离最远的距离。

3.利用上面的算法,我们可以知道,一个节点到最远的节点3,节点3不是叶1就是叶2 。所以我们只要求出叶1和叶2,就可以求出每个点距离最远的点距离是多少。

代码实现

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int Max = 11000;
int max1,max2;  //分别记录两个最远叶 
int vis[Max];    //dfs的vis数组
int vi;          //对应vis数组的值
long long M1[Max],M2[Max];   //每个点到左边最远叶和右边最远叶的距离//比较他们,就可以得到最大距离 
long long MAX;
long long sum;
int N;void ini();           //局部初始化
void initial();       //完全初始化
void dfs( int x ,int X);    
void addE(int u,int v,int w);   //添加边操作struct edge{     //边集int u,v,w;
};
vector<edge> G[Max];  //邻接表struct OFMP{int point;long long sum;
};
OFMP oneOFmaxPoint;  //记录一个最大叶和他的到起始点的距离int main()
{ios::sync_with_stdio(0);int v_,w_;while(cin>>N){for(int i=2;i<=N;i++){cin>>v_>>w_;addE(i,v_,w_);ini();dfs(1,0);   //从第一台电脑开始找第一个最大叶max1 = oneOFmaxPoint.point; ini();dfs(max1,2); //从第一个最大叶找第二个最大叶max2 = oneOFmaxPoint.point;//这两个dfs都记录了第i个点到第一或第二个最大叶的距离ini();dfs(max2,3);   //从第二个最大叶遍历到第一个最大叶for(int i=1;i<=N;i++){MAX = max(M1[i],M2[i]);  //比较2个最大方向的距离cout<<MAX<<endl;  }initial();}return 0;
}}void addE(int u,int v,int w)
{edge E1;E1.u=u,E1.v=v,E1.w=w;G[u].push_back(E1);edge E2;E2.u = v ,E2.v = u,E2.w = w;G[v].push_back(E2);
}void dfs( int x ,int X)
{vis[x] = vi;for(int i=0;i<G[x].size();i++) {//cout<<"1 ";if( vis[ G[x][i].v ] != vi)  //不是叶break;//	cout<<"2 ";if( i == G[x].size() -1 )   //是叶节点 {//维护路径大小和叶 //	cout<<"3 ";if( sum > oneOFmaxPoint.sum )oneOFmaxPoint.sum = sum , oneOFmaxPoint.point= x;return ;} }for(int i=0;i<G[x].size();i++){if(vis[ G[x][i].v ] != vi){vis[ G[x][i].v ] = vi;sum += (long long)G[x][i].w;if(X==2) 	M1[ G[x][i].v ] = sum;//更新第一个最大叶子节点遍历结果if(X==3)    M2[ G[x][i].v ] = sum;//更新第二个最大叶子节点遍历结果dfs( G[x][i].v , X);sum -= (long long)G[x][i].w;}}
}void ini()
{vi++;oneOFmaxPoint.point=0 ,oneOFmaxPoint.sum=0;sum = 0;
}void initial()
{oneOFmaxPoint.point=0 ,oneOFmaxPoint.sum=0;MAX = 0;for( int i=0;i<=N;i++ ) {M1[i]=0;M2[i]=0;G[i].clear();}
}

小结
每次得到结果后,一定要初始化,已经掉进这个坑里很多次了。


http://chatgpt.dhexx.cn/article/YI99dgG4.shtml

相关文章

求树的直径算法以及证明

以下为两次dfs&#xff08;bfs&#xff09;的做法以及正确性证明。 算法步骤 &#xff08;1&#xff09;任取树上一点S&#xff0c;以S为源点BFS得S到各个顶点的d值&#xff1b; &#xff08;2&#xff09;取d值最大者之一为P&#xff0c;再以P为源点BFS得P到各个顶点的d值&am…

求树的直径

树的直径&#xff0c;即树上的最长路径&#xff0c;显然&#xff0c;树的直径可以有很多条&#xff08;考虑一棵菊花&#xff09;。 接下来我们考虑如何求出一棵树的直径。有很多种O(n)的算法。 算法1&#xff1a;我们任取树中的一个节点x&#xff0c;找出距离它最远的点y&am…

数据结构 树的直径

学习的最大理由是想摆脱平庸&#xff0c;早一天就多一份人生的精彩&#xff1b;迟一天就多一天平庸的困扰。 学习日记 目录 学习日记 一、定义 二、两次DFS 定理&#xff1a; 反证法证明&#xff1a; 1、若y在d(t,s)上 2、若y不在d(s,t)上&#xff0c;且d(y,z)与d(s.t)…

树的直径(最长的简单路径)

题解&#xff1a;分析一下&#xff0c;由于是树&#xff0c;所以两点之间的路径有且只有一条&#xff0c;为了求出欧拉路&#xff0c;所以必然会向回走&#xff0c;从递归的角度来看&#xff0c;假设x看作一个树根&#xff0c;有t个孩子y1…yt。其中每个孩子为根的子树欧拉路都…

树的直径概念及求解

文章目录 1. 使用两次DFS求得树的直径2. 使用树形DP求得树的直径3. 性质4. 参考文献和习题 树上任意两节点之间最长的简单路径即为树的「直径」。显然&#xff0c;一棵树可以有多条直径&#xff0c;他们的长度相等。可以用两次 D F S / B F S DFS/BFS DFS/BFS 或者树形 D P D…

树的直径两种求法

首先先介绍一下什么是树的直径&#xff0c;树的直径就是树中所有最短路经距离的最大值。 求树的直径通常有两种方法&#xff0c;一种是通过两次搜索&#xff08;bfs和dfs均可&#xff09;&#xff0c;另一种就是通过树形dp来求了。 先来介绍一下用两次深搜来求树的直径&#x…

树的直径的概念

树的直径的定义: 在一棵树中&#xff0c;每一条边都有权值&#xff0c;树中的两个点之间的距离&#xff0c;定义为连接两点的路径上边权之和&#xff0c; 那么树上最远的两个点&#xff0c;他们之间的距离&#xff0c;就被称之为&#xff0c;树的直径。 树的直径的别称&#x…

树的直径

【定义】 我们将一棵树T ( V&#xff0c;E )的直径定义为maxδ ( u&#xff0c;v ) ( u&#xff0c;v ∈ V )&#xff0c;也就是说&#xff0c;树中所有最短路径距离的最大值即为树的直径。 【做法】 例题传送门Cow Marathon&#xff08;POJ 1985&#xff09; 对于树的直径…

浅谈树的直径

一、定义&#xff1a; 我们将一棵树T(V,E)的直径定义为max(u,v) (u,v∈V)&#xff0c;也就是说&#xff0c;树中所有最短路径距离的最大值即为树的直径。&#xff08;就是树中的最长路径的长度&#xff09; 二、求解树德直径&#xff1a; 求得树的直径有两种方法&#xff0c;一…

3.网络基础-三层路由网络

3.1、IP地址 初识IP地址 • 在IP网络中&#xff0c;通信节点需要有一个唯一的IP地址&#xff1b; • IP地址用于IP报文的寻址以及标识一个节点&#xff1b; • IPv4地址一共32bits&#xff0c;使用点分十进制的形式表示&#xff1b; IP地址的分类 E类是保留地址 公有IP及私有…

计算机网络——配置动态路由实验

配置动态路由实验 实验目的实验软件实验要求实验知识实验步骤实验结果 实验目的 掌握 RIP 协议配置。RIP 协议配置的命令为&#xff1a;router(config)#network <connected-network> 其中参数 <connected-network> 表示路由器的直连网络号。 实验软件 Cisco Pac…

路由技术基础

路由技术是在网络拓扑结构中为不同节点的数据提供传输路径的技术&#xff0c;路由选择算法是其核心内容。路由选择算法分为静态路由选择算法和动态路由选择算法。 一.路由基础 1.路由的基本概念 路由、路由器 &#xff08;1&#xff09;路由 路由是指导IP报文从源发送到目…

网络路由交换 -- 静态路由 和 缺省路由

1.IP路由基础 1.什么是静态路由&#xff1f; 静态路由是由管理员手工添加的路由条目&#xff1b;通过静态路由添加的都是非直连网段。 2.静态路由的特点&#xff1f; 静态路由的添加和删除都需要手工完成&#xff1b;静态路由无法适应网络的动态变更&#xff0c;即缺乏适应…

cisco packet tracer配置网络路由

广州大学 计算机网络实验 配置网络路由 利用packet tracer搭建如图网络 中间是三个路由器&#xff0c;两边各接一台计算机。 首先先把网络搭建出来 1是路由器&#xff0c;2是终端设备&#xff0c;3是连接设备的线缆。左键点击1或者2或3&#xff0c;区域4就会出现不同的路由器…

路由的几个基本概念-直连路由/网关路由/主机路由/网络路由/动态路由/静态路由/默认路由

1.动态路由/静态路由 1&#xff09;动态路由 路由选择器自动共享路由信息 自动构造路由表&#xff0c;需要一个路由协议&#xff0c;如RIP或OSPF 2&#xff09;静态路由 路由选择器不共享路由信息&#xff08;单方向路由&#xff09; 手工构造路由表 2.直连路由/网关路由…

计算机网络-实验四:配置网络路由

一、实验目的 了解路由器的特点、基本功能及配置方法&#xff1b;使用模拟软件Packet Tracer 8.0&#xff0c;熟悉Cisco路由器的操作&#xff1b;配置静态路由和距离矢量路由协议RIP&#xff0c;实现给定网络的连通&#xff1b;从而加深对IP编址、路由转发机制、路由协议、路由…

广州大学 计算机网络实验 2020版 配置网络路由

一、实验目的 了解路由器的特点、基本功能及配置方法&#xff1b;使用模拟软件 Packet Tracer 5.3 熟悉 Cisco 路由器的操 作&#xff1b;配置静态路由和距离矢量路由协议 RIP&#xff0c;实现给定网络的连通&#xff1b;从而加深对IP 编址、路由转发机制、路由协 议、路由表的…

Ad hoc网络路由协议概述1——分类

目录 1. 传统Internet网络路由协议 1.1 距离矢量路由协议&#xff08;Distance Vector&#xff09; 1.2 链路状态路由协议&#xff08;Link State&#xff09; 1.3 在Ad hoc网络中的不适用性 1.3.1 动态变化的网络拓扑结构 1.3.2 周期性的广播拓扑信息 1.3.3 单向的无线…

3.2 Ad Hoc 网络路由协议

Ad Hoc 网络路由协议 Ad Hoc 网络路由面临的问题 在设计Ad Hoc 网络路由协议时&#xff0c;我们首先要明确可能面临的问题&#xff1a; &#xff08;1&#xff09;路由信息不易获得&#xff1a;定期交换路由信息的开销大、网络资源有限&#xff0c;并且必须被所有节点共享、节…

Ad hoc网络路由协议概述2——表驱动路由协议(1)DSDV协议(Destination-sequenced distance vector protocol)

目录 1 DSDV协议的先导协议: DV协议的困境 2 解决DV协议计数到无穷的困境 2.1 毒性反转 (Poisoned reverse) 2.2 增加序列号 3 DSDV协议 3.1 基本流程 3.2 广播机制 3.2.1 交换路由信息的两个时刻 3.2.2 交换路由信息的两种方式 3.2.3 序列号不同如何选择 3.2.4 序列…