雪花算法的原理和实现Java

article/2025/9/19 21:16:57

SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 id。在分布式系统中的应用十分广泛,且ID 引入了时间戳,基本上保持自增的,后面的代码中有详细的注解。

这 64 个 bit 中,其中 1 个 bit 是不用的,然后用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 id,12 bit 作为序列号。

给大家举个例子吧,比如下面那个 64 bit 的 long 型数字:

  • 第一个部分,是 1 个 bit:0,这个是无意义的。

  • 第二个部分是 41 个 bit:表示的是时间戳。

  • 第三个部分是 5 个 bit:表示的是机房 id,10001。

  • 第四个部分是 5 个 bit:表示的是机器 id,1 1001。

  • 第五个部分是 12 个 bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 00000000。

①1 bit:是不用的,为啥呢?

因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。

②41 bit:表示的是时间戳,单位是毫秒。

41 bit 可以表示的数字多达 2^41 - 1,也就是可以标识 2 ^ 41 - 1 个毫秒值,换算成年就是表示 69 年的时间。

③10 bit:记录工作机器 id,代表的是这个服务最多可以部署在 2^10 台机器上,也就是 1024 台机器。

但是 10 bit 里 5 个 bit 代表机房 id,5 个 bit 代表机器 id。意思就是最多代表 2 ^ 5 个机房(32 个机房),每个机房里可以代表 2 ^ 5 个机器(32 台机器),也可以根据自己公司的实际情况确定。

④12 bit:这个是用来记录同一个毫秒内产生的不同 id。

12 bit 可以代表的最大正整数是 2 ^ 12 - 1 = 4096,也就是说可以用这个 12 bit 代表的数字来区分同一个毫秒内的 4096 个不同的 id。

简单来说,你的某个服务假设要生成一个全局唯一 id,那么就可以发送一个请求给部署了 SnowFlake 算法的系统,由这个 SnowFlake 算法系统来生成唯一 id。

这个 SnowFlake 算法系统首先肯定是知道自己所在的机房和机器的,比如机房 id = 17,机器 id = 12。

接着 SnowFlake 算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个 64 bit 的 long 型 id,64 个 bit 中的第一个 bit 是无意义的。

接着 41 个 bit,就可以用当前时间戳(单位到毫秒),然后接着 5 个 bit 设置上这个机房 id,还有 5 个 bit 设置上机器 id。

最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成 id 的请求累加一个序号,作为最后的 12 个 bit。

最终一个 64 个 bit 的 id 就出来了,类似于:

这个算法可以保证说,一个机房的一台机器上,在同一毫秒内,生成了一个唯一的 id。可能一个毫秒内会生成多个 id,但是有最后 12 个 bit 的序号来区分开来。

下面我们简单看看这个 SnowFlake 算法的一个代码实现,这就是个示例,大家如果理解了这个意思之后,以后可以自己尝试改造这个算法。

总之就是用一个 64 bit 的数字中各个 bit 位来设置不同的标志位,区分每一个 id。

SnowFlake 算法的实现代码如下:


public class IdWorker {//因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。//机器ID  2进制5位  32位减掉1位 31个private long workerId;//机房ID 2进制5位  32位减掉1位 31个private long datacenterId;//代表一毫秒内生成的多个id的最新序号  12位 4096 -1 = 4095 个private long sequence;//设置一个时间初始值    2^41 - 1   差不多可以用69年private long twepoch = 1585644268888L;//5位的机器idprivate long workerIdBits = 5L;//5位的机房idprivate long datacenterIdBits = 5L;//每毫秒内产生的id数 2 的 12次方private long sequenceBits = 12L;// 这个是二进制运算,就是5 bit最多只能有31个数字,也就是说机器id最多只能是32以内private long maxWorkerId = -1L ^ (-1L << workerIdBits);// 这个是一个意思,就是5 bit最多只能有31个数字,机房id最多只能是32以内private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);private long workerIdShift = sequenceBits;private long datacenterIdShift = sequenceBits + workerIdBits;private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;private long sequenceMask = -1L ^ (-1L << sequenceBits);//记录产生时间毫秒数,判断是否是同1毫秒private long lastTimestamp = -1L;public long getWorkerId(){return workerId;}public long getDatacenterId() {return datacenterId;}public long getTimestamp() {return System.currentTimeMillis();}public IdWorker(long workerId, long datacenterId, long sequence) {// 检查机房id和机器id是否超过31 不能小于0if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));}if (datacenterId > maxDatacenterId || datacenterId < 0) {throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));}this.workerId = workerId;this.datacenterId = datacenterId;this.sequence = sequence;}// 这个是核心方法,通过调用nextId()方法,让当前这台机器上的snowflake算法程序生成一个全局唯一的idpublic synchronized long nextId() {// 这儿就是获取当前时间戳,单位是毫秒long timestamp = timeGen();if (timestamp < lastTimestamp) {System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",lastTimestamp - timestamp));}// 下面是说假设在同一个毫秒内,又发送了一个请求生成一个id// 这个时候就得把seqence序号给递增1,最多就是4096if (lastTimestamp == timestamp) {// 这个意思是说一个毫秒内最多只能有4096个数字,无论你传递多少进来,//这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围sequence = (sequence + 1) & sequenceMask;//当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生IDif (sequence == 0) {timestamp = tilNextMillis(lastTimestamp);}} else {sequence = 0;}// 这儿记录一下最近一次生成id的时间戳,单位是毫秒lastTimestamp = timestamp;// 这儿就是最核心的二进制位运算操作,生成一个64bit的id// 先将当前时间戳左移,放到41 bit那儿;将机房id左移放到5 bit那儿;将机器id左移放到5 bit那儿;将序号放最后12 bit// 最后拼接起来成一个64 bit的二进制数字,转换成10进制就是个long型return ((timestamp - twepoch) << timestampLeftShift) |(datacenterId << datacenterIdShift) |(workerId << workerIdShift) | sequence;}/*** 当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID* @param lastTimestamp* @return*/private long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}//获取当前时间戳private long timeGen(){return System.currentTimeMillis();}/***  main 测试类* @param args*/public static void main(String[] args) {System.out.println(1&4596);System.out.println(2&4596);System.out.println(6&4596);System.out.println(6&4596);System.out.println(6&4596);System.out.println(6&4596);
//		IdWorker worker = new IdWorker(1,1,1);
//		for (int i = 0; i < 22; i++) {
//			System.out.println(worker.nextId());
//		}}
}

SnowFlake算法的优点:


(1)高性能高可用:不依赖第三方库或者中间件,完全在内存中生成,可用性强。

(2)容量大:每秒中能生成数百万的自增ID。

(3)ID自增:存入数据库中,索引效率高。

SnowFlake算法的缺点:


依赖与系统时间的一致性,如果系统时间被回调,或者改变,可能会造成id冲突或者重复。
 

实际中我们的机房并没有那么多,我们可以改进改算法,将10bit的机器id优化,成业务表或者和我们系统相关的业务。

 请尊重作者劳动成果,转载请标明原文链接(原文持续更新,建议阅读原文):雪花算法的原理和实现Java_雨夜青草的博客-CSDN博客_雪花算法


http://chatgpt.dhexx.cn/article/UXm3oDAU.shtml

相关文章

雪花算法简介

文章目录 1、简介2、雪花算法3、算法实现4、算法优缺点5、补充 1、简介 在生成随机主键的时候&#xff0c;我第一个想到的就是UUID&#xff0c;但是UUID在MySQL中作为主键生成时&#xff0c;就会出现一个问题&#xff0c;UUID生成的是乱序的。这时候&#xff0c;学习MP的过程中…

雪花算法

文章目录 1、雪花算法的起源2、雪花算法原理3、雪花算法java实现4、一些细节讨论4.1调整比特位分布4.2workerid一般如何生成 1、雪花算法的起源 snowflake中文的意思是 雪花&#xff0c;雪片&#xff0c;所以翻译成雪花算法。它最早是twitter内部使用的分布式环境下的唯一ID生…

SnowFlake 雪花算法详解与实现

我是陈皮&#xff0c;一个在互联网 Coding 的 ITer&#xff0c;个人微信公众号「陈皮的JavaLib」关注第一时间阅读最新文章。 文章目录 背景SnowFlake 雪花算法算法实现算法验证算法优缺点注意事项 背景 现在的服务基本是分布式&#xff0c;微服务形式的&#xff0c;而且大数据…

雪花算法(SnowFlake)

简介 现在的服务基本是分布式、微服务形式的&#xff0c;而且大数据量也导致分库分表的产生&#xff0c;对于水平分表就需要保证表中 id 的全局唯一性。 对于 MySQL 而言&#xff0c;一个表中的主键 id 一般使用自增的方式&#xff0c;但是如果进行水平分表之后&#xff0c;多…

二维反卷积 matlab,二维反卷积的实现(实际意义不明确)

前言 一维反卷积(deconv),可以很好的实现一维卷积的反过程!但是二维反卷积就很难恢复了!为什么呢?因为我们知道二维卷积计算的过程就是:卷积核不断滑动,卷积核不断与原始数据中的小矩阵做"点乘并求和";现假设卷积核为3x3,那么每一个和它点乘的小矩阵对应尺寸…

python 反卷积(DeConv) tensorflow反卷积(DeConv)(实现原理+手写)

Tensorflow反卷积&#xff08;DeConv&#xff09;实现原理手写python代码实现反卷积&#xff08;DeConv&#xff09; 理解&#xff1a; https://www.zhihu.com/question/43609045/answer/130868981 上一篇文章已经介绍过卷积的实现&#xff0c;这篇文章我们学习反卷积原理&am…

地震信号系列完结篇-反卷积方法

前言 本篇将详细地讲解地震信号中用到的反卷积方法。反卷积方法的作用在文章 地震信号的一些基本概念 中已经阐述过&#xff0c;简单的说就是&#xff1a;在压缩原信号的同时&#xff0c;对频谱进行补偿&#xff08;反卷积的输出信号&#xff09;。而在地震信号处理中&#xf…

反卷积的棋盘格效应

本文译自来自谷歌大脑的AUGUSTUS ODENA等人的文章: Deconvolution and Checkerboard Artifacts[1], 虽然是16年的博客了, 但是其对解释反卷积的棋盘效应已经如何规避都给出了非常好和到位的意见. 下面让我们开始~ 前言 当我们分析由神经网络生成的图片的时候, 常常会发觉有一种…

反卷积神经网络介绍

反卷积是指&#xff1a;通过测量输出和已经输入重构未知输入的过程。在神经网络中&#xff0c;反卷积过程并不具备学习的能力&#xff0c;仅仅是用于可视化一个已经训练好的卷积网络模型&#xff0c;没有学习训练的过程。 下图所示为VGG 16反卷积神经网络的结构&#xff0c;展示…

一文读懂什么是反卷积

反卷积&#xff08;Deconvolution&#xff09;的概念第一次出现是Zeiler在2010年发表的论文Deconvolutional networks中&#xff0c;但是并没有指定反卷积这个名字&#xff0c;反卷积这个术语正式的使用是在其之后的工作中(Adaptive deconvolutional networks for mid and high…

反卷积相关论文理解

关于反卷积原理&#xff0c;小编就不再赘述&#xff0c;在知乎中有详细的解释&#xff0c;很清晰&#xff0c;都是大佬。 链接如下&#xff1a;https://www.zhihu.com/question/43609045/answer/120266511 反卷积相对于卷积在神经网络结构的正向和反向传播中做相反的运算&…

反卷积理解和推导

参考 怎样通俗易懂地解释反卷积&#xff1f; - 知乎&#xff0c;【基础知识学习】卷积与反卷积学习笔记 - 知乎 1.概念 反卷积是一种特殊的正向卷积&#xff0c;先按照一定的比例通过补 0 来扩大输入图像的尺寸&#xff0c;接着旋转卷积核&#xff0c;再进行正向卷积。 图1 反…

生物信息学反卷积论文阅读

文章目录 反卷积的概念反卷积的具体方式反卷积预测RNA序列知识背景公式推导 亚硫酸氢盐测序知识背景公式推导 R包的使用RNA测序数据分析使用亚硫酸氢盐数据进行测序 反卷积的概念 由于许多组织样本不适合分解成单个细胞&#xff0c;因此不能利用单细胞RNA测序技术对它们的单个…

理解反卷积

先看看卷积&#xff0c;数字只是说明位置方便&#xff0c;不是具体数值&#xff0c;这里是valid卷积 &#xff0c;stride1 由CNN基础我们知道 17 这个点是由前面1 2 5 6 和卷积核运算得到的&#xff0c;那么反卷积就是要从17 反推1,2,5,6 &#xff0c;这是一个无穷解问题&#…

反卷积常用方法

反卷积 一个用于分类任务的深度神经网络通过卷积来不断抽象学习&#xff0c;实现分辨率的降低&#xff0c;最后得到一个较小的FeatureMap&#xff0c;即特征图&#xff0c;通常大小为 5 5 5\times5 55或者 7 7 7\times7 77。而图像分割任务需要恢复与原尺寸大小一样的图片&am…

声音反卷积matlab,用MATLAB做反卷积

关键词&#xff1a;反卷积 MATLAB fft 频移 分母中频谱零点 卷积核 % 代码如下&#xff1a; clear all;clc; h [1 1 1 1] % 要求 f [1 -2 3 -2] % 已知 g conv(h,f) % 已知 g h*f 这里卷积结果g知道&#xff0c;f知道&#xff0c;f视作卷积核&#xff0c;反卷积求h …

彻底搞懂CNN中的卷积和反卷积

前言 卷积和反卷积在CNN中经常被用到&#xff0c;想要彻底搞懂并不是那么容易。本文主要分三个部分来讲解卷积和反卷积&#xff0c;分别包括概念、工作过程、代码示例&#xff0c;其中代码实践部分主结合TensorFlow框架来进行实践。给大家介绍一个卷积过程的可视化工具&#x…

卷积与反卷积

1、卷积 上图展示了一个卷积的过程&#xff0c;其中蓝色的图片(4*4)表示的是进行卷积的图片&#xff0c;阴影的图片(3*3)表示的是卷积核&#xff0c;绿色的图片(2*2)表示是进行卷积计算之后的图片。在卷积操作中有几个比较重要的参数&#xff0c;输入图片的尺寸、步长、卷积核的…

反卷积原理

一 介绍 反卷积&#xff0c;可以理解为卷积操作的逆运算。这里千万不要当成反卷积操作可以复原卷积操作的输入值&#xff0c;反卷积并没有那个功能&#xff0c;它仅仅是将卷积变换过程中的步骤反向变换一次而已&#xff0c;通过将卷积核转置&#xff0c;与卷积后的结果再做一遍…

Tensorflow——反卷积

目标——主要用来进行上采样&#xff0c;使图像形状变大 函数&#xff1a;conv2d_transpose(value, filter, output_shape, strides, padding"SAME", data_format"NHWC", nameNone) Arg&#xff1a; value&#xff1a;指需要做反卷积的输入图像&#xff…