一、meanshift
均值漂移就是把指定的样本点沿着密度上升的方向移向高密度区域。这里可以用矢量加法的几何意义来理解。参考博文Mean Shift 聚类算法
meanshift为
M r ( x ) = 1 k ∑ x i ∈ S r ( x ) ( x i − x ) M_r(x)=\frac{1}{k}\sum\limits_{x_i\in S_r(x)}(x_i-x) Mr(x)=k1xi∈Sr(x)∑(xi−x)
其中 S r ( x ) = { y : ∥ y − x ∥ < = r } S_r(x)=\{y:\|y-x\|<=r\} Sr(x)={y:∥y−x∥<=r}, k k k是 S r ( x ) S_r(x) Sr(x)中点的个数。
更 新 x = x + M r ( x ) 更新x=x+M_r(x) 更新x=x+Mr(x)

实现上图的python代码:
from sklearn.datasets import make_blobsX1,y1=make_blobs(n_samples=200, n_features=2, centers=[[1.2, 1.2]],cluster_std=[[.1]], random_state=9)
plt.scatter(X1[:,0],X1[:,1],c=y1)
def meanshift(point,X,r,eps):pointNeigh=X[np.linalg.norm(X-point,axis=1)<=r]shift=np.sum(pointNeigh-point,axis=0)/len(pointNeigh)points=[point]while np.linalg.norm(shift)>eps:point=point+shiftpointNeigh=X[np.linalg.norm(X-point,axis=1)<=r]shift=np.sum(pointNeigh-point,axis=0)/len(pointNeigh)points.append(point)return pointspoints=meanshift(np.array([1,1]),X1,0.1,0.000001)
points=np.array(points)
plt.figure(figsize=(10,6))
plt.scatter(X1[:,0],X1[:,1],c=y1)
plt.plot(points[:,0],points[:,1],'r<--',markersize=8)
plt.annotate(r'$start$', xy = (1, 1), xytext = (1, 0.9),arrowprops = {'headwidth': 10, # 箭头头部的宽度'headlength': 5, # 箭头头部的长度'width': 4, # 箭头尾部的宽度'facecolor': 'r', # 箭头的颜色'shrink': 0.1, # 从箭尾到标注文本内容开始两端空隙长度},family='Times New Roman', # 标注文本字体为Times New Romanfontsize=18, # 文本大小为18fontweight='bold', # 文本为粗体color='green', # 文本颜色为红色# ha = 'center' # 水平居中
)
plt.annotate(r'$end$', xy = (points[-1][0],points[-1][1] ), xytext = (points[-1][0], points[-1][1]-0.1),arrowprops = {'headwidth': 10, # 箭头头部的宽度'headlength': 5, # 箭头头部的长度'width': 4, # 箭头尾部的宽度'facecolor': 'r', # 箭头的颜色'shrink': 0.1, # 从箭尾到标注文本内容开始两端空隙长度},family='Times New Roman', # 标注文本字体为Times New Romanfontsize=18, # 文本大小为18fontweight='bold', # 文本为粗体color='green', # 文本颜色为红色# ha = 'center' # 水平居中)
二、meanshift聚类
1.算法流程
需要给定的参数
bandwidth----带宽
Mindist—漂移均值收敛的阈值
center_distance----合并簇的阈值
第一阶段—聚类
需要初始化的集合
创建一个空的中心点集centers,用于存放各个簇所对应的中心点
创建一个空的集合results,用于存放各个簇所包含的点
1.将数据集X的点都标记为未访问unvisited;
2.从数据集X中取出一个点,记为point,判断它是否属于unvisited,如果属于,将其从unvisited删除,并进行第3步,否则重新从X取点;
3.创建一个空的集合result_point,用来存放point对应的簇中所包含的点;
4.从X中找到位于以point为中心,带宽为bandwidth之内的点,用neighbor表示;
5.判断neighbor是否为空集,则返回第2步,否则将neighbor中全部点加入到result_point中,并将这些点从unvisited中删除;
6.计算point在neighbor上的漂移均值meanshift;
7.判断shift是否大于给定的阈值Min-dist,如果大于,更新点point=point+shift并返回第4步,否则将point加入到centers,result_point加入到results中,再返回第2步//
第二阶段–合并
由第一阶段得到centers和相应的results。由于centers中有一些中心点之间的距离可能很小,我们需要将其所对应的簇合并成一个簇,并更新中心点。
第三阶段–分组
由于X中的点可能位于多个簇(result_point)中,我们需要确定其到底属于哪一个簇。
统计每个点在各个簇中所出现点次数,次数最高的簇就是该点最终所属的簇。
2.python代码
import math
def euclidean_dist(self,pointA,pointB):""""""if pointA.shape==pointB.shape:##pointA和pointB是两个点return np.linalg.norm(pointA-pointB)else:##pointA和pointB中有一个是点集return np.linalg.norm(pointA-pointB,axis=1)def gaussian_kernel(dist,bandwidth):"""dist---欧式距离bandwidth---带宽"""weight=(1/(np.sqrt(2*math.pi)*bandwidth))*np.exp(-(dist**2)/(2*np.power(bandwidth,2)))return weight
def compute_shift(pointNeigh,point,bandwidth,kernel):if kernel==False:shift=np.sum(pointNeigh-point,axis=0)/len(pointNeigh)else:dists=np.linalg.norm(pointNeigh-point,axis=1)point_weight=gaussian_kernel(dists,bandwidth)point_weight=point_weight.reshape(len(point_weight),1)shift=np.sum((pointNeigh-point)*point_weight,axis=0)/np.sum(point_weight) return shiftdef Clustering(X,bandwidth,MinDist,kernel=False):"""init_result---各个簇所包含的点的索引,init_centers--中心点"""unvisited=list(np.arange(len(X))) #未访问点的索引init_result=[] #用于存放结果init_centers=[]for i in range(len(X)):point=X[i]if i in unvisited:unvisited.remove(i) #删除以访问点c_i=[]indexs=np.where(np.linalg.norm(X-point,axis=1)<=bandwidth)[0]pointNeigh=X[indexs] #点point点bandwidth内搭点c_i.extend(indexs) #把这些点加入point为中心点簇中for j in list(indexs):if j in unvisited:unvisited.remove(j)shift=compute_shift(pointNeigh,point,bandwidth,kernel)while np.linalg.norm(shift)>MinDist: #判断shift的大小point=point+shiftindexs=np.where(np.linalg.norm(X-point,axis=1)<=bandwidth)[0]if len(indexs)==0:breakpointNeigh=X[indexs]c_i.extend(indexs)for k in list(indexs):if k in unvisited:unvisited.remove(k)shift=compute_shift(pointNeigh,point,bandwidth,kernel)init_centers.append(point)init_result.append(c_i)return init_result,init_centersdef merge(init_centers,init_result,center_distance):final_centers=[init_centers[0]]final_result=[init_result[0]]k=len(init_centers)i=1stats=Truewhile i<k:for j in range(len(final_centers)):if np.linalg.norm(init_centers[i]-final_centers[j])<=center_distance:final_centers[j]=(init_centers[i]+final_centers[j])/2final_result[j].extend(init_result[i])stats=Falsebreakif stats==True:final_centers.append(init_centers[i])final_result.append(init_result[i])i+=1stats=Truereturn final_result,final_centers def groupPoint(X,final_result,final_centers):result_table=pd.DataFrame(np.zeros((len(X),len(final_centers))),index=range(len(X)),columns=range(len(final_centers)))for i in range(len(final_centers)):clusterI_index=final_result[i]for j in range(len(clusterI_index)):result_table.iloc[clusterI_index[j],i]+=1result_id=np.argmax(result_table.values,axis=1) return result_id
def plot(X,result_id,final_centers):for i in range(len(final_centers)):plt.scatter(X[result_id==i][:,0],X[result_id==i][:,1])
三、测试
1.数据集一
from sklearn.datasets import make_blobs
X,y=make_blobs(n_samples=400, n_features=2, centers=[[1.2, 1.2],[-1,-1]],cluster_std=[0.2,0.3], random_state=9)
plt.scatter(X[:,0],X[:,1])

init_result,init_centers=Clustering(X,0.4,0.00001,kernel=True)
final_result,final_centers=merge(init_centers,init_result,1.2)
result_id=groupPoint(X,final_result,final_centers)
plot(X,result_id,final_centers)

2.数据集二

X_d=np.array(data)
init_result,init_centers=Clustering(X_d,4,0.00001,kernel=True)
final_result,final_centers=merge(init_centers,init_result,1.2)
result_id=groupPoint(X_d,final_result,final_centers)
plot(X_d,result_id,final_centers)

3. 数据集三
import matplotlib.pyplot as plt
from sklearn.datasets import make_moons x,y = make_moons(n_samples=1500, shuffle=True,noise=0.06, random_state=None)
plt.scatter(x[:,0], x[:,1], c=y, s=7)
plt.show()

init_result,init_centers=Clustering(x,0.5,0.00001,kernel=True)
final_result,final_centers=merge(init_centers,init_result,1.)
result_id=groupPoint(x,final_result,final_centers)
plot(x,result_id,final_centers)

经过反复的调center_distance这个参数,都没有达到理想的聚类结果。
三、带有核函数的meanshift聚类
带有核函数的meanshift
m ( x ) = ∑ s ∈ S g ( ∥ s − x h ∥ 2 ) ( s − x ) ∑ s ∈ S g ( ∥ s − x h ∥ 2 ) m(x)=\frac{\sum\limits_{s\in S}g(\|\frac{s-x}{h}\|^2)(s-x)}{\sum\limits_{s\in S}g(\|\frac{s-x}{h}\|^2)} m(x)=s∈S∑g(∥hs−x∥2)s∈S∑g(∥hs−x∥2)(s−x)
更新中心坐标:
x = m ( x ) + x x=m(x)+x x=m(x)+x
四、疑点
如何能把用于合并簇的阈值参数取消掉。












