主成分分析法概述、案例实例分析

article/2025/5/16 21:03:41
http://hi.baidu.com/weizican/blog/item/9e816926f2977521d5074257.html

主成分分析法

主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。

主成分分析法是一种数学变换的方法它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。依次类推,I个变量就有I个主成分。

这种方法避免了在综合评分等方法中权重确定的主观性和随意性,评价结果比较符合实际情况;同时,主成份分量表现为原变量的线性组合,如果最后综合指标包括所有分量,则可以得到精确的结果,百分之百地保留原变量提供的变差信息,即使舍弃若干分量,也可以保证将85%以上的变差信息体现在综合评分中,使评价结果真实可靠。是在实际中应用得比较广的一种方法。由于其第一主成份(因子)在所有的主成分中包含信息量最大,很多学者在研究综合评价问题时常采用第一主成分来比较不同实体间的差别。综上所述,该方法的优点主要体现在两个方面:1.权重确定的客观性;2.评价结果真实可靠。

1.主成分分析的基本原理
主成分分析:把原来多个变量划为少数几个综合指标的一种统计分析方法,是一种降维处理技术。)

记原来的变量指标为x1x2xP,它们的综合指标——新变量指标为z1z2zmm≤p),则
主成分分析法概述、案例实例分析

z1
z2zm分别称为原变量指标x1x2xP的第一,第二,,第m主成分,在实际问题的分析中,常挑选前几个最大的主成分。

主成分分析法概述、案例实例分析
① zizji≠jij=12m)相互无关;
② z1
x1x2xP的一切线性组合中方差最大者,z2是与z1不相关的x1x2xP的所有线性组合中方差最大者;……zm是与z1z2……zm1都不相关的x1x2xP的所有线性组合中方差最大者。

 

主成分分析法概述、案例实例分析
2. 
主成分分析的计算步骤

① 计算相关系数矩阵
主成分分析法概述、案例实例分析

② 
计算特征值与特征向量
主成分分析法概述、案例实例分析

③ 
计算主成分贡献率及累计贡献率
主成分分析法概述、案例实例分析

④ 
计算主成分载荷

主成分分析法概述、案例实例分析

主成分分析方法(举例)

 

3. 主成分分析方法应用实例
1) 实例1: 流域系统的主成分分析(张超,1984
3.5.1(点击显示该表)给出了某流域系统57个流域盆地的9项变量指标。其中,x1代表流域盆地总高度(m),x2代表流域盆地山口的海拔高度(m),x3代表流域盆地周长(m),x4代表河道总长度(m),x5代表河道总数,x6代表平均分叉率,x7代表河谷最大坡度(度),x8代表河源数, x9代表流域盆地面积(km2)。
主成分分析法概述、案例实例分析

注:表中数据详见书本8788页。
(1) 
分析过程:
① 
将表3.5.1中的原始数据作标准化处理,然后将它们代入相关系数公式计算,得到相关系数矩阵(表3.5.2)。
主成分分析法概述、案例实例分析

② 
由相关系数矩阵计算特征值,以及各个主成分的贡献率与累计贡献率(见表3.5.3)。由表3.5.3可知,第一,第二,第三主成分的累计贡献率已高达86.5%,故只需求出第一、第二、第三主成分z1z2z3即可。
主成分分析法概述、案例实例分析

主成分分析法概述、案例实例分析
z3
上的载荷


(2) 结果分析:
第一主成分z1x1x3x4x5x8x9有较大的正相关,可以看作是流域盆地规模的代表;
第二主成分z2x2有较大的正相关,与x7有较大的负相关,分可以看作是流域侵蚀状况的代表;
第三主成分z3x6有较大的正相关,可以看作是河系形态的代表;
根据主成分载荷,该流域系统的9项要素可以被归纳为三类,即流域盆地的规模,流域侵蚀状况和流域河系形态。如果选取其中相关系数绝对值最大者作为代表,则流域面积、流域盆地出口的海拔高度和分叉率可作为这三类要素的代表。

http://hi.baidu.com/penpaopen/blog


http://chatgpt.dhexx.cn/article/Tn3t1iby.shtml

相关文章

清风数学建模学习笔记——主成分分析(PCA)原理详解及案例分析

主成分分析 本文将介绍主成分分析(PCA),主成分分析是一种降维算法,它能将多个指标转换为少数几个主成分,这些主成分是原始变量的线性组合,且彼此之间互不相关,其能反映出原始数据的大部分信息。 一般来说,当…

多元统计及R语言案例分析 (主成分和因子分析对学生成绩神秘联系分析)

嗨喽! 大家好,我是“流水不争先,争得滔滔不绝”的翀,18双非本科生一枚,正在努力!欢迎大家来交流学习,一起学习数据分析,希望我们一起好好学习,天天向上,目前是小社畜一枚…

超详细SPSS主成分分析计算指标权重(一)

一、指标权重计算确定的困惑 相信很多写过或者正在写指标处理类论文的朋友都曾对如何计算指标权重充满困惑,到底是用熵值法,还是主成分分析法?或者其他各种看起来奥妙无穷却难以上手操作的神奇方法?好不容易确定要选用主成分分析…

一文读懂 主成分分析 与 因子分析

2023-2-20更新:  修改了一些文字错误,优化了排版,增加了一些拓展内容,祝大家学业有成!(期待三连😁😁) 目录 一、 主成分分析二、因子分析三、多元共线性问题简介3.1 多…

主成分之综合竞争力案例分析

一、案例背景 1.案例说明 研究调查100家公司2010-2013年关于财务方面的具体数据,这些财务指标维度分别为盈利能力、偿债能力、运营能力、发展能力以及公司治理。其中每个维度分别有几个分析项,但是有些指标是越大越好,有些指标是越小越好。…

数据分析,主成分分析例题

已知协方差矩阵求X的各主成分以及主成分的贡献率 主成分分析 原理:找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,且彼此之间互不相关 统计方法:主成分分析(主分量分析&…

主成分分析PCA案例及原理

1. 主成分分析PCA案例 https://blog.csdn.net/goodshot/article/details/78080220 http://www.cnblogs.com/zhangchaoyang/articles/2222048.html 附: 使用上方链接的解释: 2. 主成分分析(PCA)原理总结http://www.cnblogs.com/pinard/p/623…

主成分分析简单例子

一、数据降维 对于现在维数比较多的数据,我们首先需要做的就是对其进行降维操作。降维,简单来说就是说在尽量保证数据本质的前提下将数据中的维数降低。降维的操作可以理解为一种映射关系,例如函数,即由原来的二维转换成了一维。处…

spss分析方法-主成分分析

spss分析方法-主成分分析(转载) 主成分分析利用的是“降维”的思想,利用原始变量的线性组合组成主成分。在信息损失较小的前提下,把多个指标转化为几个互补相关的综合指标。下面我们主要从下面四个方面来解说: 实际…

主成分分析案例

去百度文库上一搜,是很老的题目了。这里所做的只是准备工作,为后面更多的数据处理做准备。 例题 1.对原始资料矩阵进行标准化处理 zef_data xlsread(chengshi.xls); z zscore(zef_data) z 1.1977 0.7149 0.6674 1.1390 0.9189 3.111…

快速搞定PCA(主成分分析)(原理 代码 案例)

目录 一、基本介绍 1.1原理 1.2主成分分析的几何解释 1.3主要步骤 1.4主成分个数的选取原则 二、主成分分析代码 2.1MATLAB代码 2.2Python代码 三、实用案例 一、基本介绍 1.1原理 主成分分析是最常用的线性降维方法,通过某种线性投影,将高维的数…

【机器学习】主成分分析实现案例 (PCA)

一、说明 这篇文章的目的是提供主成分分析(PCA)的完整和简化的解释。我们将逐步介绍它是如何工作的,这样每个人都可以理解并使用它,即使是那些没有强大数学背景的人。 PCA是网络上广泛覆盖的机器学习方法,并且有一些关…

什么是主成分分析?经典案例解析变量降维

1、作用 主成分分析将多个有一定相关性的指标进行线性组合,以最少的维度解释原数据中尽可能多的信息为目标进行降维,降维后的各变量间彼此线性无关,最终确定的新变量是原始变量的线性组合,且越往后主成分在方差中的比重也小&…

比较两篇文章的相似性方法

对于这个题目,开始毫无头绪,后来经过查阅资料现在讲方法总结如下: 1、利用余弦定理 我们知道向量 a,b之间的夹角可用余弦定理求得: 如果夹角的余弦值越小,那么夹角也越大。如果2个向量相等,那么其值为1。利…

Python案例分析|文本相似度比较分析

本案例通过设计和实现有关文本相似度比较的类Vector和Sketch,帮助大家进一步掌握设计Python类来解决实际问题的能力。 01、文本相似度比较概述 通过计算并比较文档的摘要可实现文本的相似度比较。 文档摘要的最简单形式可以使用文档中的k-grams(k个连…

计算机如何判断两篇文章相似性

这个仍然是极客时间上,关于《索引技术核心20讲》的一篇笔记同时结合自己的理解加了点料,这个专栏虽然只有20讲,但是真不错,老师解答问题还是很积极,回答字数经常比问题字数多。有兴趣的朋友可以到我星球(在…

ai写文章检测原理(文章相似度检测)

小编来了!今天要和大家聊一聊关于ai写文章检测原理的评测对比。究竟哪种方法更加高效准确呢?让我们一起来看看吧! 概括:本文将从多个角度对ai写文章检测原理进行评测对比,包括算法准确性、速度、自动化程度、用户体验…

【跨语言剽窃检测】文本相似度分析之一

对比文件1: 2010年的跨语言剽窃检测新方法 作者RaFael Corezola Pereira instituion : UFRGS 摘要: 作者提出一个跨语言剽窃检测新方法,分为5个主要阶段: languange normalization、retrieval of candidate documents、classfier …

文本相似度综述

本文目录 文本相似度的定义文本相似度计算方法基于字符串的方法基于语料库的方法基于词袋VSMLSA、PLSALDA(需要进一步了解) 基于神经网络基于搜索引擎 基于世界知识基于本体基于网络知识 其他方法句法分析混合方法 文本相似度的定义 其中, common&#x…

JAVA-计算两篇文章的相似度

1.场景: 在很多公司的文件管理系统中,都有类似于对比多篇文章的相似度,例如在写公众号推文时,如果标记了原创,就会对比当前文章和库里已存在文章的相似程度,如果相似度过于高,则标记为原创的文章…