了解ResNet

article/2025/8/22 21:25:52

产生背景

网络的层数越多,就能够提取更多的特征,但是如果只是简单的增加深度,就会导致梯度爆炸。也有文章提出,解决该问题的方法是正则化初始化和中间的正则化层,但是这样会导致另一个问题,退化,网络的层数增加,但是在训练集上的准确率达到饱和之后开始下降,导致深度网络不能被很好的优化。

意义

作者根据输入将层表示为学习残差函数。实验表明,残差网络更容易优化,并且能够通过增加相当的深度来提高准确率。核心是解决了增加深度带来的副作用(退化问题),这样能够通过单纯地增加网络深度,来提高网络性能。

resnet的网络结构

如果我们把一个网络的输出定义为 H ,残差定义为 H-x ,那么,ResNet其实就是在学习这个残差 F=H-x ,通过将残差最小化,来学习模型。而且,在CNN中,输出的维度可以与输入维度不一样,比如池化层、或者卷积核的strides设为2,这就会导致输出 F 与输入 x 的维度不一样,这个时候就不能直接把 F,x 直接相加了,针对这种情况,ResNet作者建议可以用 1 * 1 的卷积层,stride=2,就是采用下图中的右边模块 ,从而与 F 维度匹配起来,再进行相加。
下图是ResNet中使用的两种残差单元:一种是以两个33的卷积网络串接在一起作为一个残差模块,另外一种是11、33、11的3个卷积网络串接在一起作为一个残差模块。(也就是实现与虚线的区别)在这里插入图片描述
resnet的结构图:
在这里插入图片描述
不同深度的resnet:
在这里插入图片描述

输出结果

从下图可以看出残差网络能够在深度增加的情况下,维持较高的准确率的增长,有效地避免了VGG网络中层数增加到一定程度,模型准确度不升反降的问题
在这里插入图片描述
时间有限,以后再补充一些细节。
代码实现部分参考链接:
https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v2.py


http://chatgpt.dhexx.cn/article/PDAQebhQ.shtml

相关文章

ResNet网络

1.1.ResNet的提出 残差网络(ResNet) 是由来自Microsoft Research的4位学者提出的卷积神经网络,在2015年的ImageNet大规模视觉识别竞赛(ImageNet Large Scale Visual Recognition Challenge, ILSVRC)中获得了图像分类和物体识别的优胜。 网络…

ResNet详解——通俗易懂版

ResNet学习 什么是ResNet为什么要引入ResNet?ResNet详细解说 本篇博客主要是自己对论文的一些解读以及参考一些博客后的理解,如若有不对之处,请各位道友指出。多谢! 2015年刚提出ResNet的Paper 2016对ResNet进行改进之后的Paper …

CNN经典网络模型(五):ResNet简介及代码实现(PyTorch超详细注释版)

目录 一、开发背景 二、网络结构 三、模型特点 四、代码实现 1. model.py 2. train.py 3. predict.py 4. spilit_data.py 五、参考内容 一、开发背景 残差神经网络(ResNet)是由微软研究院的何恺明、张祥雨、任少卿、孙剑等人提出的, 斩获2015年ImageNet竞赛…

ResNet详解+PyTorch实现

1.Resnet简介 深度残差网络(Deep residual network, ResNet)的提出是CNN图像史上的一件里程碑事件,由于其在公开数据上展现的优势,作者何凯明也因此摘得CVPR2016最佳论文奖。 Resnet是残差网络(Residual Network)的缩写&#xff…

点估计

1.说明: 设总体 X 的分布函数形式已知, 但它的一个或多个参数为未知, 借助于总体 X 的一个样本来估计总体未知参数的值的问题称为点估计问题. 在统计问题中往往先使用最大似然估计法, 在最大似然估计法使用不方便时, 再用矩估计法. 2.常用构造估计量的方法 1&#…

【应用统计学】参数统计-点估计与估计量的评价标准

一、点估计 参数的点估计就是根据样本构造一个统计量,作为总体未知参数的估计。这个统计量称为未知参数的估计量。 在统计中,经常使用的点估计量有: 二、估计量的评价标准 1、无偏性 无偏性即指估计量抽样分布的数学期望等于总体参数的真值。 2、有效…

功能点估算方法,如何让估算偏差更小?

1、何为软件功能点 ​ ​软件功能点是站在业务角度对软件规模的一种度量,功能点的多少代表软件规模的大小,这里说的功能点是标准的功能点,按照标准的估算方法,每个人对特定需求估算出的功能点数是一致的。 功能点估算方法&…

三点估算法

施工时间划分为乐观时间、最可能时间、悲观时间 乐观时间:也就是工作顺利情况下的时间为a 最可能时间:最可能时间,就是完成某道工序的最可能完成时间m 悲观时间:最悲观的时间就是工作进行不利所用时间b。 活动历时均值(或估计值)(乐观估计4最可能估计悲观估计)/6 …

点估计、区间估计(利用回归方程进行预测)

回归模型经过各种检验并标明符合预定的要求后,可利用它来预测因变量。预测(predict)是指通过自变量x的取值来预测因变量y的取值。 1、点估计 利用估计的方程,对于x的一个特定值 ,求出y的一个估计值就是点估计。点估计分为两种&…

数理统计中的点估计

• 统计推断的基本问题有二:估计问题,和假设检验问题. • 本章讨论总体参数的点估计和区间估计.理解这两种估计的思想,掌握求参数估计量的方法和评判估计量好坏的标准. 点估计 问题的提出 设灯泡寿命 T~N(μ,σ2) ,但参数 μ 和 σ2 未知. 现在要求通过对总体抽样得到的…

统计学-点估计和区间估计

点估计和区间估计 点估计 矩估计法 正态分布是一种统计量,目的是描述总体的某一性质。而矩则是描述这些样本值的分布情况,无论几阶矩,无外乎是描述整体的疏密情况。K阶矩分为原点矩和中心矩: 前者是绝对的:1阶就是平均…

点估计和区间估计——统计学概念

概念简介: 点估计和区间估计是通过样本统计量估计总体参数的两种方法。点估计是在抽样推断中不考虑抽样误差,直接以抽样指标代替全体指标的一种推断方法。因为个别样本的抽样指标不等于全体指标,所以,用抽样指标直接代替全体指标&…

【定量分析、量化金融与统计学】统计推断基础(3)---点估计、区间估计

一、前言 我发现很多人学了很久的统计学,仍然搞不清楚什么是点估计、区间估计,总是概念混淆,那今天我们来盘一盘统计推断基础的点估计、区间估计。这个系列统计推断基础5部分分别是: 总体、样本、标准差、标准误【定量分析、量化…

【数据统计】— 峰度、偏度、点估计、区间估计、矩估计、最小二乘估计

【数据统计】— 峰度、偏度、点估计、区间估计、矩估计、最小二乘估计 四分位差异众比率变异系数利用数据指标指导建模思路 形状变化数据分布形态峰度: 度量数据在中心聚集程度偏度 利用数据指标指导建模思路 参数估计点估计区间估计矩估计举例:黑白球(矩…

7.1 参数的点估计

小结: 点估计是一种统计推断方法,它用于通过样本数据估计总体参数的值。在统计学中,总体是指一个包含所有个体的集合,而样本是从总体中选出的一部分个体。总体参数是总体的某种特征,如平均值、标准差、比例等。 点估…

【数理统计】参数估计及相关(点估计、矩估计法、最大似然估计、原点矩中心距)

1 基础知识 1.1 常见分布的期望和方差 1.2 对数运算法则 log ⁡ a ( M N ) log ⁡ a M log ⁡ a N log ⁡ a ( M / N ) log ⁡ a M − log ⁡ a N log ⁡ a ( 1 / N ) − log ⁡ a N log ⁡ a M n n log ⁡ a M \log _{a}(M N)\log _{a} M\log _{a} N \\ \log _{a}(M / N…

二、机器学习基础11(点估计)

点估计:用实际样本的一个指标来估计总体的一个指标的一种估计方法。点估计举例:比如说,我们想要了解中国人的平均身高,那么在大街上随便找了一个人,通过测量这个人的身高来估计中国人的平均身高水平;或者在…

统计学之参数估计(点估计和参数估计)含例题和解答

统计学之参数估计 参数点估计矩估计法极大似然估计法点估计的评价准则(无偏性一致性有效性) 区间估计主要公式置信区间区间估计的内容总体均值的区间估计(大样本)总体均值的区间估计(小样本)单一总体均值的区间估计总结两个总体均值之差的区间估计(大样本…

点估计(矩估计法和最大似然估计法)

估计即是近似地求某个参数的值,需要区别理解样本、总体、量、值 大致的题型是已知某分布(其实包含未知参数),从中取样本并给出样本值 我只是一个初学者,可能有的步骤比较繁琐,请见谅~ 1、矩估计法 做题步骤…

概率论--点估计

首先我们来看下什么是参数估计 那么参数估计问题又是什么? 参数估计分为两大类,一类是点估计,还有一类是区间估计,点估计分为矩估计和最大似然估计,就比如说估计降雨量,预计今天的降雨量如果是550mm就…