机器学习(29)之奇异值分解SVD原理与应用详解

article/2025/10/14 1:08:41

微信公众号

关键字全网搜索最新排名

【机器学习算法】:排名第一

【机器学习】:排名第一

【Python】:排名第三

【算法】:排名第四

前言

奇异值分解(Singular Value Decomposition,简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域,是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。

特征值与特征向量

首先回顾下特征值和特征向量的定义如下:

Ax=λx

其中A是一个n×n的矩阵,x是一个n维向量,则我们说λ是矩阵A的一个特征值,而x是矩阵A的特征值λ所对应的特征向量。


求出特征值和特征向量有什么好处呢? 我们可以将矩阵A特征分解。如果我们求出了矩阵A的n个特征值λ1≤λ2≤...≤λn,以及这n个特征值所对应的特征向量{w1,w2,...wn},那么矩阵A就可以用下式的特征分解表示:

A=WΣW^−1

其中W是这n个特征向量所张成的n×n维矩阵,而Σ为这n个特征值为主对角线的n×n维矩阵。一般会把W的这n个特征向量标准化,即满足||wi||^2=1, 或者说wi^Twi=1,此时W的n个特征向量为标准正交基,满足W^TW=I,即W^T=W^−1, 也就是说W为酉矩阵。这样特征分解表达式可以写成

A=WΣW^T

注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?


SVD定义

SVD也是对矩阵进行分解,但和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:

A=UΣV^T

其中U是一个m×m的矩阵,Σ是一个m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个n×n的矩阵。U和V都是酉矩阵,即满足U^TU=I,V^TV=I。下图可以很形象的看出上面SVD的定义:

那么如何求出SVD分解后的U,Σ,V这三个矩阵呢?


http://chatgpt.dhexx.cn/article/MMoA8bKL.shtml

相关文章

【机器学习】这次终于彻底理解了奇异值分解(SVD)原理及应用

奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,有相当多的应用与奇异值都可以扯上关系,它不光可以用于降维算法中的特征分解,比如做feature reduction的PCA,做数据压缩&#x…

联邦学习——用data-free知识蒸馏处理Non-IID

《Data-Free Knowledge Distillation for Heterogeneous Federated Learning》ICML 2021 最近出现了利用知识蒸馏来解决FL中的用户异构性问题的想法,具体是通过使用来自异构用户的聚合知识来优化全局模型,而不是直接聚合用户的模型参数。然而&#xff0c…

【FLIS】Clustered Federated Learning via Inference Similarity for Non-IID Data Distribution

Clustered Federated Learning via Inference Similarity for Non-IID Data Distribution 基于推理相似性的非iid数据分布聚类联邦学习 Abstract1.INTRODUCTION2.FEDERATED LEARNING WITH CLUSTERINGA. Overview of FLIS AlgorithmB. Clustering Clients 3.EXPERIMENTSA. Exper…

Federated Learning with Non-IID Data 论文笔记

本文提出联邦学习中的由于Non-IID数据分布而精度降低是因为权重分散(weight divergence),而权重散度可以用搬土距离(EMD)量化,最后提出了一种策略:通过创建一个在所有边缘设备之间全局共享的数据…

论文分享:「FED BN」使用LOCAL BATCH NORMALIZATION方法解决Non-iid问题

‍ ‍ 本次分享内容基于ICLR 2021收录的一篇文章:《FED BN: FEDERATED LEARNING ON NON-IID FEATURES VIA LOCAL BATCH NORMALIZATION》,这篇论文主要探讨了使用LOCAL BATCH NORMALIZATION方法解决Non-iid问题。围绕这篇论文的分享将分为4个部分&#…

On the convergence of FedAvg on non-iid data

在这篇blog中我们一起来阅读一下 On the convergence of FedAvg on non-iid data 这篇 ICLR 2020 的paper. 主要目的 本文的主要目的是证明联邦学习算法的收敛性。与之前其他工作中的证明不同,本文的证明更贴近于实际联邦学习的场景。特别的, 所有用户…

Federated Learning with Non-IID Data

Federated Learning with Non-IID Data 论文中分析了FedAvg算法在Non-IID数据时,准确率下降的原因。并提出共享5%的数据可提高准确率。 论文笔记参考:https://blog.csdn.net/GJ_007/article/details/104768415 Federated Learning with Non-IID Data …

什么是TLB文件,怎样从dll文件中提取TYPEID信息?- IID

文章目录 1.TLB是什么?2.怎样从dll中导出TLB文件?3.怎样创建TLB文件?4.如何导入TLB5.作者答疑Com是windows平台提供的二进制互操作解决方案。如果给你一个dll,或者windows自带的dll,是否有可能提取其Com接口信息,答案是可以的。 1.TLB是什么? TLB文件是一个说明文件,通…

怎么实现联邦学习中的Non-IID?

联邦学习的一大特点就是数据分布是Non-IID,Non-IID意为非独立同分布。那么怎么在实验中实现non-iid呢?这是我这篇博客想讨论的问题。 part 1: 在堪称联邦学习“开山之作”FedAvg这篇论文中,是这样描述的: 数据集是MN…

【联邦学习】联邦学习量化——non-iid数据集下的仿真

文章目录 改进项目背景量化函数的改进non-iid数据集的设置Fedlab划分数据集的踩雷 改进项目背景 在前面的项目中,虽然对联邦学习中,各个ue训练出来的模型上传的参数进行了量化,并仿真的相关结果。但是仍有一些俺不是非常符合场景的情况&…

「隐语小课」联邦学习之Non-IID问题

更多干货内容,请移步公众号:隐语的小剧场 一、引言 本文针对联邦学习中遇到的Non-IID问题进行探讨,介绍Non-IID产生的原因,分析Non-IID对联邦学习的影响,以及调研了近年来针对该问题的解决方案,并进行分类…

联邦学习中的non-iid总结

最近研究联邦学习(federated learning,FL)中的non-iid的解决办法时遇到瓶颈,写成博客将最近的工作总结一下,希望有大佬看到这篇博客不吝赐教。 什么是non-iid 先从维基百科引出独立同分布的定义: 在概率论…

IID 与 Non-IID

数据独立同分布(Independent Identically Distribution,IID) 数据与数据之间都是独立的,但满足同一个分布。(独立:一个数据的出现不会影响另一个数据) 数据分布描述的是数据的统计情况&#x…

dy设备deviceid iid注册分析

清楚缓存,重新打开app, 点击同意按钮,会触发设备注册; 很明显是一个post包,device_register 可以看到请求体加密了 那么 请求体是什么呢? 很老版本思路:都是直接明文注册 较老版本思路:在反编译…

Redis 设计与实现: redisObject 数据结构,以及 Redis 的数据类型

redisObject 数据结构,以及 Redis 的数据类型 redisObject 是 Redis 类型系统的核心, 数据库中的每个键、值,以及 Redis 本身处理的参数, 都表示为这种数据类型。 redisObject 的定义位于 redis.h : /** Redis 对象…

(五)、Redis的RDB持久化---Redis设计与实现读书笔记

两个用于生成RDB文件的命令 save:会阻塞Redis服务器进程,直到RDB文件创建完毕,在阻塞期间,服务器不能处理任何命令请求bgsave:会派生出一个子进程,然后由子进程负责创建RDB文件,服务器经常(父进…

《redis设计与实现》 读书笔记

《redis设计与实现》 作者:黄健宏 读书笔记 一、前言 什么是redis: Redis是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。简而言之redis就是放在远程网络上的一个key-va…

《Redis设计与实现》阅读:Redis底层研究之简单动态字符串SDS

除仅用于字符串字面量的情况外,对于可以被修改值的字符串的表示,Redis底层并没有采用C语言传统的字符串表示,即以空字符结尾的字符数组,而是采用专门为其设计的简单动态字符串作为其默认字符串表示,其英文全称为Simple…

Redis秒杀功能设计与实现

前言 抢购问题不仅是电商类项目中一个重要的业务,也是许多开发人员在进阶过程中绕不开的问题,关于抢购,如果理清了前后的逻辑和里面涉及到的几个关键性的问题,问题就迎刃而解了 抢购中的几个常见问题 如何设计抢购功能?(表结构,以及整体的抢购思路)不借助中间件如何实…

Redis设计与实现阅读总结(一)数据结构和对象

Redis设计与实现阅读总结(一)数据结构和对象 最近团队几个人和我聊了下,加上我自己平时的反思,我发现自己问题确实很多 其中一个问题就是,自己学习东西没有系统性,没有总结 这次的博客算是一个总结的开始。…