随机游走 Random Walk

article/2025/8/23 17:26:52

随机游走(英语:Random Walk,缩写为 RW),是一种数学统计模型,它是一连串的轨迹所组成,其中每一次都是随机的。[1][2]它能用来表示不规则的变动形式,如同一个人酒后乱步,所形成的随机过程记录。1905年,由卡尔·皮尔逊首次提出。[3]

随机游走可以在各种空间上进行:通常研究的包括图,整数或实数线,向量空间,曲面,高维的黎曼流形,以及群,有限生成群或李群。在最简单的情况中,时间是离散的,随机游走的路径为一个由自然数索引的随机变量序列(Xt) = (X1, X2, …)。但是,也可以定义在随机时间采取步骤的随机游走,在这种情况下,必须定义X
t的所有时间t ∈ [0,+∞)。

通常,我们可以假设随机游走是以马尔可夫链或马可夫过程的形式出现,但是比较复杂的随机游走则不一定以这种形式出现。在某些限制条件下,会出现一些比较特殊的模式,如扩散作用的模型布朗运动,醉汉走路(drunkard’s walk)或莱维飞行。

随机游走在各个领域有许多应用,例如在工程学和许多科学领域,包括生态学,心理学,计算机科学,物理,化学,生物学以及经济学。在数学中,我们可以用个体为本模型的随机游走来估算π的值。它可以用来模拟分子在液体或气体中传播时的路径,觅食动物的搜索路径,波动的股票价格和赌徒的财务状况。在这些领域中,随机游走可以用来解释许多观察到的现象,因此它是记录随机活动的基本统计模型。[1]

在这里插入图片描述

https://zh.wikipedia.org/wiki/%E9%9A%A8%E6%A9%9F%E6%BC%AB%E6%AD%A5


http://chatgpt.dhexx.cn/article/IeSFM3F8.shtml

相关文章

时间序列:时间序列模型---随机游走过程(The Random Walk Process)

本文是Quantitative Methods and Analysis: Pairs Trading此书的读书笔记。 随机游走过程是一种特殊的ARMA序列。从分子运动到股价波动等现象都被建模为随机游走。 随机游走过程是AR(1)序列,而且,时间序列在时刻的值为: 随机游走过程本质上是到当前时间…

随机游走(Random Walk)算法

随机游走 英文:random walk 定义:随机游走,概念接近于布朗运动,是布朗运动的理想数学状态。 核心概念:任何无规则行走者所带的守恒量都各自对应着一个扩散运输定律。 随机游走算法的基本思想是: 从一个或一系列顶点…

ArrayList分页Lists.partition遇到的坑

一、问题的发现 最近在用分布式任务powerjob的时候,发现了一个关于数组分页之后的序列化问题。事情是这样的,在我执行MapReduce模式的时候,发现了在生成子任务时报了com.esotericsoftware.kryo.kryo5.KryoException: Class cannot be created…

partition list java_Java之Lists.Partition项目中的使用

开心一笑 【媳妇儿问我:“孩子都快出生了,你名字想好了没呀?” 我说:“都想好了,要是生个儿子名字就叫“好帅” 媳妇儿问:“为什么呀?” 我说:“别人看到我就会说,好帅的爸爸。】 提出问题 Java之Lists.Partition在项目中的如何被使用??? 学习地址 解决问题 前言 具…

Lists.partition的使用和里面的坑

作用 partition(List list, int size): 将list集合按指定长度进行切分&#xff0c;返回新的List<List<??>>集合。 案例 引入pom文件 <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><vers…

Lists.partition集合分组使用以及注意事项

1.介绍 Lists.partition是com.google.common.collect包下的一个方法。 作用是将目标集合按照传入的size分组。 2.使用场景 一般用于固定大小的集合处理&#xff0c;比如&#xff1a;我有两百个商品类型&#xff0c;要求前一百个一种处理方式&#xff0c;后一百个一种处理方…

Guava Lists.transform踩坑小记

1.问题提出 1.前段时间在项目中用到Lists.transform返回的List&#xff0c;在对该list修改后发现修改并没有反映在结果里&#xff0c;研究源码后发现问题还挺大。 下面通过单步调试的结果来查看Guava Lists.transform使用过程中需要注意的地方。 a.对原有的list列表修改会影响L…

Google guava工具类中Lists、Maps、Sets简单使用

Google guava Guava是对Java API的补充&#xff0c;对Java开发中常用功能进行更优雅的实现&#xff0c;使得编码更加轻松&#xff0c;代码容易理解。Guava使用了多种设计模式&#xff0c;同时经过了很多测试&#xff0c;得到了越来越多开发团队的青睐。Java最新版本的API采纳了…

Java常用工具类 : StringUtils、CollectionUtils、ArrayUtils、Lists、Maps等

文章目录 StringUtils引入依赖判断函数 (isNotBlank系列)大小写函数 (转换)删除函数 (remove)字符替换函数 (replace)拆分合并函数 (split)截取函数 (substring)删除空白函数 (trim)判断是否相等函数 (equals)是否包含函数 (contains) CollectionUtils集合判断函数并集、交集、…

Lists的使用

List&#xff08;接口&#xff09;顺序时List最重要的特性&#xff1a;它可保证元素按照规定的顺序排列。List为Collection添加了大量方法&#xff0c;以便我们在List中部插入和删除元素&#xff08;只推荐对LinkedList这样做&#xff09;。List也会生成一个ListIterator&#…

Lists 方法汇总

一、Lists.partition(List<T> list, int size) 将 list 集合按指定长度进行切分&#xff0c;返回新的List<List<T>>集合。 import com.google.common.collect.Lists; import org.junit.Test; import java.util.List;public class ListDemo {Testpublic voi…

LU分解的实现

LU分解是将矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积。矩阵可以不是NxN的矩阵 一个可逆矩阵可以进行LU分解当且仅当它的所有子式都非零。如果要求其中的L矩阵&#xff08;或U矩阵&#xff09;为单位三角矩阵&#xff0c;那么分解是唯一的。同理可知&#xff0c;矩阵的L…

LU分解求线性方程组的解

LU分解是矩阵分解的一种&#xff0c;可以将一个矩阵分解为一个上三角矩阵和一个下三角矩阵的乘积。 LU分解可以用来求逆矩阵&#xff0c;解线性方程组等。本文将介绍LU分解求线性方程组的解。 1.定义 如果A是一个方阵&#xff0c;A的LU分解是将A分解成如下形式: 其中L,U分别为…

矩阵分析——LU分解

LU分解初步 矩阵的LU分解主要用来求解线性方程组或者计算行列式。在使用初等行变换法求解线性方程组的过程中&#xff0c;系数矩阵的变化情况如下&#xff1a; 由上可知&#xff1a; &#xff0c;其中U就是上面矩阵A经过行变换后的上三角矩阵&#xff0c;Eij表示将i行元素与j行…

Doolittle分解法(LU分解)详细分析以及matlab的实现

一、基本介绍 前面介绍的Gauss消去法实际上做的事情是将系数矩阵A做了一个三角分解&#xff0c;即&#xff1a; ALU 式&#xff08;1&#xff09; 其中&#xff0c;L为单位下三角阵&#xff0c;U为上三角阵&#xff0c;该分解唯一。若A为非奇异&#xff0c;则U也非奇异。…

线性代数笔记10——矩阵的LU分解

在线性代数中&#xff0c; LU分解(LU Decomposition)是矩阵分解的一种&#xff0c;可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积&#xff08;有时是它们和一个置换矩阵的乘积&#xff09;。LU分解主要应用在数值分析中&#xff0c;用来解线性方程、求反矩阵或…

线性代数——LU(LR)分解

文章目录 定义为什么要LU分解为什么能做到LU分解 利用LU分解求行列式值利用LU分解求解线性方程组利用LU分解求逆矩阵对角线上元素有0的情况 定义 定义&#xff1a;给定矩阵A&#xff0c;将A表示成下三角矩阵L和上三角矩阵U的乘积&#xff0c;称为LU分解。再进一步&#xff0c;…

LU分解Matlab算法分析

最近矩阵分析老师出了一道题目作为作业&#xff0c;是一道程序题&#xff0c;题目是对A矩阵做LU分解&#xff0c;要求能对A实现PALU的分解&#xff0c;并最终输出L&#xff0c;U&#xff0c;P矩阵。 先来解读下题目&#xff0c;寥寥几句话&#xff0c;里面囊括的信息量却不少&a…

LU分解,LDLT分解,Cholesky分解

LU分解 如果方阵是非奇异的&#xff0c;即的行列式不为0&#xff0c;LU分解总是存在的。 ALU&#xff0c;将系数矩阵A转变成等价的两个矩阵L和U的乘积&#xff0c;其中L和U分别是下三角和上三角矩阵&#xff0c;而且要求L的对角元素都是1&#xff0c;形式如下&#xff1a; 本…

矩阵的直接LU分解法

上篇博文由高斯消去法的矩阵形式推出了矩阵的LU分解&#xff1a;矩阵的三角分解法&#xff1b; 实际上&#xff0c;可以直接处理矩阵&#xff0c;得到矩阵的LU分解&#xff0c;这就是矩阵的直接LU分解&#xff1b;直接通过矩阵的元素得到计算LU元素的递推公式&#xff0c;不需…