激活函数(5)ELU函数、PReLU函数

article/2025/9/21 16:48:10

ELU函数

ELU函数公式和曲线如下图

elu函数公式

elu函数图 

ELU函数是针对ReLU函数的一个改进型,相比于ReLU函数,在输入为负数的情况下,是有一定的输出的,而且这部分输出还具有一定的抗干扰能力。这样可以消除ReLU死掉的问题,不过还是有梯度饱和和指数运算的问题。

 

PReLU函数

PReLU函数公式和曲线如下图 

 prelu公式

prelu函数图 

PReLU也是针对ReLU的一个改进型,在负数区域内,PReLU有一个很小的斜率,这样也可以避免ReLU死掉的问题。相比于ELU,PReLU在负数区域内是线性运算,斜率虽然小,但是不会趋于0,这算是一定的优势吧。

我们看PReLU的公式,里面的参数α一般是取0~1之间的数,而且一般还是比较小的,如零点零几。当α=0.01时,我们叫PReLU为Leaky ReLU,算是PReLU的一种特殊情况吧。

 


http://chatgpt.dhexx.cn/article/Fbajdkon.shtml

相关文章

激活函数(relu,prelu,elu,+BN)对比on cifar10

最近做了个对比实验,通过修改激活函数观察对图片分类准确率的影响,现记录如下: 一.理论基础 1.1激活函数 1.2 elu论文(FAST AND ACCURATE DEEP NETWORK LEARNING BY EXPONENTIAL LINEAR UNITS (ELUS))…

22个激活函数,ReLU、RReLU、LeakyReLU、PReLU、Sofplus、ELU、CELU、SELU、GELU、ReLU6、Sigmoid、Tanh、Softsign、Hardtanh等

转自:https://www.pianshen.com/article/33331174884/ 1.22.Linear常用激活函数 1.22.1.ReLU torch.nn.ReLU() 1.22.2.RReLU torch.nn.RReLU() 1.22.3.LeakyReLU torch.nn.LeakyReLU() 1.22.4.PReLU torch.nn.PReLU() 1.22.5.Sofplus torch.nn.Softplus() 1.22.6.E…

常用激活函数(Sigmiod、Tanh、Softmax、ReLU、elu、LReLU、Softplus)函数表达式、特点、图像绘制(代码)---已解决

楼主最近在研究激活函数,索性将常用的激活函数进行了简单的整理,方便以后翻看,也希望能帮到你。 1、sigmoid函数 函数表达式:f(x) 1/(1e^-x) 函数特点: 优点:1.输出[0,1]之间;2.连续函数&#…

Sigmoid,tanh,Relu,Leaky ReLu,ELU,GeLu 激活函数理解

目录 1 神经网络为什么需要非线性激活函数?2 Sigmoid2.1缺陷2.1.1 梯度消失2.2.2 Output非zero-centered 3 Tanh3.1 缺陷 4 ReLu4.1 缺陷 5 Leaky ReLu6 ELU7 GeLu7.1 基础知识回顾7.1.1 正态分布7.1.2 概率密度函数7.1.3 累积分布函数7.1.4 Φ(x)与erf(x)函数关系公…

Elu函数~小朋友

Elu激励函数的数学表达式如下: 图一:摘自 https://blog.csdn.net/zrh_CSDN/article/details/81266188 代码如下: #code:utf-8import numpy as np import matplotlib.pyplot as pltdef elu(x,a):y x.copy()for i in range(y.shape[0]):if y[…

【Python--torch(激活函数说明+代码讲解)】激活函数(sigmoid/softmax/ELU/ReLU/LeakyReLU/Tanh)

【Python–torch】激活函数(sigmoid/softmax/ELU/ReLU/LeakyReLU/Tanh) 文章目录 【Python--torch】激活函数(sigmoid/softmax/ELU/ReLU/LeakyReLU/Tanh)1. 介绍2. 常用激活函数说明2.1 Sigmoid2.1.1 公式2.1.2 图像2.1.3 代码解读 2.2 Softmax2.2.1 公式2.2.2 代码解读 2.3 EL…

A.深度学习基础入门篇[四]:激活函数介绍:tanh、sigmoid、ReLU、PReLU、ELU、softplus、softmax、swish等

【深度学习入门到进阶】必看系列,含激活函数、优化策略、损失函数、模型调优、归一化算法、卷积模型、序列模型、预训练模型、对抗神经网络等 专栏详细介绍:【深度学习入门到进阶】必看系列,含激活函数、优化策略、损失函数、模型调优、归一化…

el-descriptions

<el-descriptions title"用户信息"><el-descriptions-item label"用户名">kooriookami</el-descriptions-item><el-descriptions-item label"手机号">18100000000</el-descriptions-item><el-descriptions-ite…

功能性模块:(8)一文理解常用激活函数(Sigmoid,ReLU,ELU,GELU...)

一文理解常用激活函数 1. Sigmoid 公式&#xff1a; Sigmoid ( x ) 1 1 exp ⁡ ( − x ) \text{Sigmoid}(x) \frac{1}{1 \exp(-x)} Sigmoid(x)1exp(−x)1​ Sigmoid的函数形状如下图所示: 对应的导数形式如下图所示&#xff1a; Sigmoid函数的优点&#xff1a; 便于求…

深入理解ReLU、Leaky ReLU、 PReLU、ELU、Softplus

文章目录 ReLULeaky ReLUPReLUELUSoftplus ReLU ReLU&#xff08;Rectified Linear Unit&#xff0c;修正线性单元&#xff09;&#xff0c;也叫Rectifier 函数&#xff0c;它的定义如下&#xff1a; Relu可以实现单侧抑制&#xff08;即把一部分神经元置0&#xff09;&#x…

搞懂激活函数(Sigmoid/ReLU/LeakyReLU/PReLU/ELU)

1. 简介 在深度学习中&#xff0c;输入值和矩阵的运算是线性的&#xff0c;而多个线性函数的组合仍然是线性函数&#xff0c;对于多个隐藏层的神经网络&#xff0c;如果每一层都是线性函数&#xff0c;那么这些层在做的就只是进行线性计算&#xff0c;最终效果和一个隐藏层相当…

YOLOv5改进系列(13)——更换激活函数之SiLU,ReLU,ELU,Hardswish,Mish,Softplus,AconC系列等

【YOLOv5改进系列】前期回顾: YOLOv5改进系列(0)——重要性能指标与训练结果评价及分析 YOLOv5改进系列(1)——添加SE注意力机制

【PyTorch】教程:torch.nn.ELU

torch.nn.ELU CLASS torch.nn.ELU(alpha1.0, inplaceFalse) paper: Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). 参数 alpha ([float]) – α \alpha α 默认为1.0inplace ([bool] ) – 内部做, 默认为 False ELU 定义 ELU ( x ) { x , …

【YOLOv7/YOLOv5系列算法改进NO.54】改进激活函数为ReLU、RReLU、Hardtanh、ReLU6、Sigmoid、Tanh、Mish、Hardswish、ELU、CELU等

文章目录 前言一、解决问题二、基本原理三、​添加方法四、总结 前言 作为当前先进的深度学习目标检测算法YOLOv7&#xff0c;已经集合了大量的trick&#xff0c;但是还是有提高和改进的空间&#xff0c;针对具体应用场景下的检测难点&#xff0c;可以不同的改进方法。此后的系…

常用激活函数:Sigmoid、Tanh、Relu、Leaky Relu、ELU优缺点总结

1、激活函数的作用 什么是激活函数&#xff1f; 在神经网络中&#xff0c;输入经过权值加权计算并求和之后&#xff0c;需要经过一个函数的作用&#xff0c;这个函数就是激活函数&#xff08;Activation Function&#xff09;。 激活函数的作用&#xff1f; 首先我们需要知道…

深度学习—激活函数详解(Sigmoid、tanh、ReLU、ReLU6及变体P-R-Leaky、ELU、SELU、Swish、Mish、Maxout、hard-sigmoid、hard-swish)

非线性激活函数详解 饱和激活函数Sigmoid函数tanh函数hard-Sigmoid函数 非饱和激活函数Relu&#xff08;修正线性单元&#xff09;&#xff1a;Relu6&#xff08;抑制其最大值&#xff09;&#xff1a;ELU&#xff08;指数线性单元&#xff09;SELULeaky-Relu / R-ReluP-Relu&a…

激活函数详解(ReLU/Leaky ReLU/ELU/SELU/Swish/Maxout/Sigmoid/tanh)

神经网络中使用激活函数来加入非线性因素&#xff0c;提高模型的表达能力。 ReLU(Rectified Linear Unit,修正线性单元) 形式如下: ReLU公式近似推导:: 下面解释上述公式中的softplus,Noisy ReLU. softplus函数与ReLU函数接近,但比较平滑, 同ReLU一样是单边抑制,有宽广的接受…

【卷积神经网络】12、激活函数 | Tanh / Sigmoid / ReLU / Leaky ReLU / ELU / SiLU / Mish

文章目录 一、Tanh二、Sigmoid三、ReLU四、Leaky ReLU五、ELU六、SiLU七、Mish 本文主要介绍卷积神经网络中常用的激活函数及其各自的优缺点 最简单的激活函数被称为线性激活&#xff0c;其中没有应用任何转换。 一个仅由线性激活函数组成的网络很容易训练&#xff0c;但不能学…

神经网络激活函数汇总(Sigmoid、tanh、ReLU、LeakyReLU、pReLU、ELU、maxout)

神经网络激活函数汇总&#xff08;Sigmoid、tanh、ReLU、LeakyReLU、pReLU、ELU、maxout&#xff09; 常规 sigmoid 和 tanh sigmoid 特点&#xff1a;可以解释&#xff0c;比如将0-1之间的取值解释成一个神经元的激活率&#xff08;firing rate&#xff09; 缺陷&#xff1…

神经网络激活函数优缺点和比较(sigmod,tanh,relu,softmax,leaky relu,ELU,SELU)

文章目录 前言一、sigmoid函数二、tanh函数三&#xff0c;ReLU函数四&#xff0c; Leaky ReLU五&#xff0c;ELU指数线性单元函数&SELU函数六&#xff0c;softmax函数 前言 理想的激活函数应该有的性质 非线性&#xff1a;这个条件是多层神经网络形成的基础&#xff0c;保…