【线性代数】四、二次型

article/2025/10/2 21:18:01

第四章 二次型

文章目录

  • 第四章 二次型
    • 一、二次型定义
    • 二、合同变换
      • 1.线性变换
      • 2.矩阵合同
        • 标准型和规范型
      • 3.惯性定理
    • 三、正定二次型

一、二次型定义

在这里插入图片描述
如果系数aij全为实数,那么为实二次型。上述二次型展开式可表示用矩阵为
在这里插入图片描述
可以看出,二次型矩阵A是一个对称矩阵,也就是满足AT=A,一个实对称矩阵对应的则是一个实二次型。一个二次型有多种写法,也有多个展开式,但是二次型矩阵是唯一的,各个等价的二次型展开式能够化为同一个二次型矩阵

二、合同变换

1.线性变换

在这里插入图片描述
那么称*为线性变换,C为线性变换的系数矩阵,如果系数矩阵可逆,那么称为可逆线性变换(常用于配方法),如果是正交矩阵,则称为正交矩阵(用于正交变换法 )。

给出二次型 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx,令x=Cy,那么就有 f ( x ) = ( C y ) T A ( C Y ) = y T ( C T A C ) y f(x)=(Cy)^TA(CY)=y^T(C^TAC)y f(x)=(Cy)TA(CY)=yT(CTAC)y记B=CTAC,那么就有 f ( x ) = y T B y = g ( y ) f(x)=y^TBy=g(y) f(x)=yTBy=g(y),也就是说二次型f(x)通过线性变换x=Cy变成了新的二次型g(y)

2.矩阵合同

设n阶矩阵A、B是二次型f(x)和g(y)的二次型矩阵,如果存在可逆矩阵C使得 C T A C = B C^TAC=B CTAC=B那么A和B合同,此时称f(x)和g(y)为合同二次型。

性质:

  1. 反身性:A和自身合同
  2. 对称性:A合同于B,则B合同于A
  3. 传递性:A和B合同,B和C合同,则A和C合同
  4. 如果A和B合同,则有r(A)=r(B),因此可逆线性变换不会改变二次型的秩
  5. 根据4.可推导出,和对称矩阵合同的也是对称矩阵。因为如果A、B为对称阵,则有 B T = ( C T A C ) T = C T A T C = C T A C = B B^T=(C^TAC)^T=C^TA^TC=C^TAC=B BT=(CTAC)T=CTATC=CTAC=B

判断同阶实对称矩阵A、B是否合同:
1.用定义法:A,B合同 ⇔ \Leftrightarrow 存在可逆矩阵C使得CTAC=B
2.用正负惯性指数:A,B合同 ⇔ \Leftrightarrow A,B正负惯性指数相同
3.用传递性:A和B合同,B和C合同,则A和C合同
4.同阶实对称矩阵A,B相似必然合同
5.特征值相同、特征向量相同无法推出A、B合同

对于合同的判别,一定要结合矩阵相似联系理解,并且充分认识到矩阵合同和矩阵相似两个概念是如何联系起来的

题型:

  • 已知 A 、 Λ A、\Lambda AΛ,求可逆矩阵C使得 C T A C = Λ C^TAC=\Lambda CTAC=Λ
  • 已知A,B,求可逆矩阵C使得 C T A C = B C^TAC=B CTAC=B(需要重点关注)

在此需要将以下概念对比记忆:矩阵合同,矩阵正交,矩阵相似,矩阵等价,向量组等价

标准型和规范型

如果二次型中只含有平方项,没有交叉项,也就是形如 d 1 x 1 2 + d 2 x 2 2 + d 3 x 3 2 + . . . d n x n 2 + d_1x_1^2+d_2x_2^2+d_3x_3^2+...d_nx_n^2+ d1x12+d2x22+d3x32+...dnxn2+的称之为标准型
若标准型中,系数di仅为0,-1,1这三种,则称该二次型为规范型

如果二次型 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx合同于标准型,则称其为合同标准型。任何二次型都可以通过配方法化为标准型和规范型,也就是任何实对称矩阵A都存在可逆矩阵C,使得 C T A C = Λ C^TAC=\Lambda CTAC=Λ。任何二次型可以通过正交变换化为标准型,也就是 Q − 1 A Q = Q T A Q = Λ Q^{-1}AQ=Q^TAQ=\Lambda Q1AQ=QTAQ=Λ。需要注意的是,配方法中的C矩阵并非是特征向量矩阵,因为C不一定是正交矩阵,不存在C-1=C^T

二次型化标准型的方法:
1.配方法
将某个变量的平方项和其相关的混合项合并在一起,配成一个完全平方项。如果不含平方项则通过 x 1 = y 1 + y 2 , x 2 = y 1 − y 2 x_1=y_1+y_2, x_2=y_1-y_2 x1=y1+y2,x2=y1y2和平方差公式来创造平方项

2.正交变换法
正交变换法的思想如下:
先求出矩阵A的特征值和特征向量,并且组成矩阵: A Q = Q Λ ⇔ Q − 1 A Q = Λ AQ=Q\Lambda \Leftrightarrow Q^{-1}AQ=\Lambda AQ=QΛQ1AQ=Λ,接着通过施密特正交化,将矩阵Q改造成正交矩阵,则有Q-1=QT,因此 Q − 1 A Q = Q T A Q = Λ Q^{-1}AQ=Q^TAQ=\Lambda Q1AQ=QTAQ=Λ,符合标准型定义

通过正交变换我们可知: Q − 1 A Q = Q T A Q = Λ Q^{-1}AQ=Q^TAQ=\Lambda Q1AQ=QTAQ=Λ,也就是 x T A x = y T ( Q T A Q ) y = y T Λ y x^TAx=y^T(Q^TAQ)y=y^T\Lambda y xTAx=yT(QTAQ)y=yTΛy,也就是x=Qy,那么 x T x = ( Q y ) T Q y = y T Q T Q y x^Tx=(Qy)^TQy=y^TQ^TQy xTx=(Qy)TQy=yTQTQy由于 Q T = Q − 1 Q^T=Q^{-1} QT=Q1,所以 x T x = y T y x^Tx=y^Ty xTx=yTy

基本步骤
在这里插入图片描述

3.惯性定理

无论采用何种可逆线性变换将二次型化为标准型或者规范型,其中的正项个数p,负项个数q都是不变的,p称为正惯性指数,q称为负惯性指数

三、正定二次型

在这里插入图片描述
二次型正定的充要条件
n元二次型f=xTAx正定 ⇔ \Leftrightarrow x ≠ 0 x\neq0 x=0有xTAx>0
⇔ \Leftrightarrow f的正惯性指数p=n
⇔ \Leftrightarrow 存在可逆矩阵D使得A=DTD
⇔ \Leftrightarrow A和E合同
⇔ \Leftrightarrow A的特征值全大于0
⇔ \Leftrightarrow A的全部顺序主子式大于0(最容易用作判断是否正定)

二次型正定的必要条件

  1. aii>0
  2. |A|>0

重要结论

  • 如果A正定,则A-1,A*, Am,kA,AT,CTAC都正定,而且AT=A
  • 如果A,B正定,那么A+B正定,其对角分块矩阵正定
  • A,B正定,而AB正定的充要条件是AB=BA。(对比记忆:正交阵相乘必然正交)
  • 如果矩阵A正定并且正交,那么A=E

http://chatgpt.dhexx.cn/article/EFgjltqo.shtml

相关文章

二次型(Quadratic Form)

1.二次型 二次型(quadratic form):n个变量的二次多项式称为二次型,即在一个多项式中,未知数的个数为任意多个,但每一项的次数都为2的多项式。 它起源于几何学中二次曲线方程和二次曲面方程化为标准形问题的…

二次型定义

二次型用矩阵表达式表示 , 1 平方项的系数直接做成主对角元素 2. 交叉项的系数除以2,放到两个对称的相应位置上。 , ,的平方项系数为 1 ,1 ,2放在对角线上,如下图红色部分; 交叉项部分 &#xff0c…

如何理解二次型?

通过矩阵来研究二次函数(方程),这就是线性代数中二次型的重点。 1 二次函数(方程)的特点 1.1 二次函数 最简单的一元二次函数就是: 给它增加一次项不会改变形状: 增加常数项就更不用说了&…

常微分方程——非齐次线性微分方程与常数变易法

文章目录 性质性质1性质2定理 例题 性质 性质1 性质2 定理 例题

一阶线性微分方程

目录 线性方程 例题: 伯努利方程 例题: ​编辑 线性方程 我们先对齐次方程进行求解: 所以一阶线性微分齐次方程的公式: 那么对于非齐次的方程,我们该怎么求解呢? 我们可以把这里的任意数c换成一个函数&a…

计算方法(六):常微分方程初值问题的数值解法

文章目录 常微分方程初值问题的数值解法欧拉(Euler)方法与改进欧拉方法欧拉方法欧拉公式的局部截断误差与精度分析改进欧拉方法 龙格-库塔(Runge-Kutta)法构造原理经典龙格-库塔法步长的自动选择 收敛性与稳定性收敛性稳定性 一阶方程组与高阶方程的数值…

数学建模笔记(九):差分方程与代数方程模型

文章目录 一、概述1.引例2.定义(函数的差分)3.定义(差分方程)4.差分方程的阶5.差分方程的解6.差分方程与微分方程的联系 二、一阶常系数线性差分方程1.一阶常系数齐次线性差分方程(一)一般形式(…

算法基础——1.4常数变易法

例一&#xff1a; [java] view plain copy /* * * * * * * * * * * * * * * * */ public class T1 { public static void main(String[] args) { for(int k1; k<5; k){ for(int i0; …

MT【129】常数变易法

已知数列\(\{x_n\}\)满足\[x_{n1}\left(\dfrac 2{n^2}\dfrac 3n1\right)x_nn1,n\in\mathbf N^*,\]且\(x_13\)&#xff0c;求数列\(\{x_n\}\)的通项公式&#xff0e; 解答: 根据题意&#xff0c;有\[x_{n1}\dfrac{(n1)(n2)}{n^2}x_nn1,\]于是\[\dfrac{x_{n1}}{(n1)^2(n2)}\dfrac…

常微分方程

高数中的微分方程 全微分方程&#xff08;需要积分域与路径无关&#xff09; 一阶线性常微分方程 y’p(x)yq(x) 对于一阶线性常微分方程&#xff0c;常用的方法是常数变易法&#xff1a; 对于方程&#xff1a;将y’p(x)y0中的常数变为函数求解非齐次方程 ( ∫ q ( x ) ∗ e …

常数变易法二

/*打印这个* A* ABA* ABCBA* ABCDCBA* ABCDEDCBA */// " ABCDCBA" 第3行&#xff08;下标从0开始吧&#xff01;&#xff09;for(int i0;i<4;i) System.out.print(" ");for(int i0;i<4;i) System.out.print((char)(Ai));for(in…

常数易变法

/*常数变易法* 打印金字塔* ** * ** * * ** * * * ** * * * * **/ public class A {public static void main(String[] args) {//常数变易法&#xff0c;演变过程System.out.println(" *");//第一行System.out.println(&…

个人对于常微分方程之一阶线性非齐次方程的常数变易法的见解

我们都知道&#xff0c;对常微分方程 最简单也是最本质的处理方法就是分离变量&#xff0c;使得方程可以变成的形式&#xff0c;两边再进行积分便可以得到方程的解.在常微分方程&#xff08;以下简称为方程&#xff09;中&#xff0c;有两类比较特殊的方程&#xff0c;分别是一…

常数变易法

思路: 现将变动部分用常数代替&#xff0c;再逐步将常数替换为变数(变量) 关键是寻找变化的规律&#xff0c;如果不直观&#xff0c;可以列出所有变化&#xff0c;进行比对&#xff0c;然后设计公式 实例: 1.输出三角星号 首先找规律&#xff0c;发现每一行都是先输出空格&…

常数变易法的“前世今生”

常数变易法思想的来源或本质是什么&#xff1f;https://www.zhihu.com/question/31329122 “常数变易法”有效的原理&#xff1a;https://blog.csdn.net/w573719227/article/details/83050039 常数变易法的解释https://www.cnblogs.com/lookof/archive/2009/01/06/1370065.html…

DBUtils事务

#DBUtils&事务 掌握DBUtils实现增删改 掌握DBUtils实现查询 理解事务的概念 理解脏读,不可重复读,幻读的概念及解决办法 能够在MySQL中使用事务 能够在JDBC中使用事务 能够在DBUtils中使用事务 第一章 DBUtils 如果只使用JDBC进行开发&#xff0c;我们会发现冗余代码过多…

Dbutils下载

链接&#xff1a;https://pan.baidu.com/s/1LlGyKUgYX8zgjgQk6GOwhA?pwdqdm3 提取码&#xff1a;qdm3 版本为最新1.7版本&#xff0c;解压即可用

java dbutils工具类_DbUtils工具类使用

DbUtils工具类使用 创建数据库 CREATE TABLE student ( userId int(11) NOT NULL, userName varchar(30) NOT NULL, gender char(1) NOT NULL, age int(11) DEFAULT NULL, PRIMARY KEY (userId) ) ENGINEInnoDB DEFAULT CHARSETutf8 把相关的包引入到项目里: 编写Student类: pa…

python DbUtils 封装

python dbutils 简介及准备工作 dbutils封装文件传送门 DBUtils是一套Python数据库连接池包&#xff0c;并允许对非线程安全的数据库接口进行线程安全包装。DBUtils来自Webware for Python。 DBUtils提供两种外部接口&#xff1a; PersistentDB &#xff1a;提供线程专用的数…