组合预测模型 | ARIMA-LSTM时间序列预测(Python)

article/2025/8/26 17:21:03

组合预测模型 | ARIMA-LSTM时间序列预测(Python)

目录

    • 组合预测模型 | ARIMA-LSTM时间序列预测(Python)
      • 预测结果
      • 基本介绍
      • 程序设计
      • 参考资料

预测结果

在这里插入图片描述

基本介绍

ARIMA-LSTM时间序列预测(Python完整源码和数据)
ARIMA-LSTM时间序列预测,AQI预测(Python完整源码和数据)
组合模型预测
ARIMA和LSTM都是用于时间序列预测的经典模型。ARIMA是一种基于差分和自回归移动平均模型的统计方法,它可以用来捕捉时间序列中的趋势和季节性。LSTM是一种基于神经网络的模型,它可以通过学习时间序列的长期依赖关系来进行预测。
将ARIMA和LSTM结合起来,可以形成ARIMA-LSTM混合模型,这种混合模型可以更好地利用ARIMA和LSTM各自的优点,提高时间序列预测的准确性。
具体地说,ARIMA-LSTM混合模型的实现步骤如下:

  1. 使用ARIMA模型进行时间序列的预处理,包括对时间序列进行差分、确定ARIMA模型的阶数等;
  2. 将预处理后的时间序列作为LSTM模型的输入,训练LSTM模型进行时间序列的预测;
  3. 将ARIMA模型和LSTM模型的预测结果进行组合,得到最终的时间序列预测结果。
    需要注意的是,ARIMA-LSTM混合模型需要进行大量的超参数调优,例如ARIMA模型的阶数、LSTM模型的神经网络结构和超参数等,这需要耗费较多的时间和精力。同时,由于ARIMA和LSTM模型都是黑盒模型,混合模型的结果也难以解释,需要进行一定的模型解释和可视化分析。

程序设计

  • 完整源码和数据下载地址:ARIMA-LSTM时间序列预测(Python)

参考资料

[1] https://blog.csdn.net/m0_57362105/category_12075406.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/m0_57362105/category_12075406.html?spm=1001.2014.3001.5482


http://chatgpt.dhexx.cn/article/CwP54Vgu.shtml

相关文章

时间序列预测系列文章总结(代码使用方法)

前言 这篇文章是对前面所写的LSTM时序预测文章的代码使用方法的总结。强烈建议使用代码前先阅读本文,而不是直接询问! 此外,代码数据中除了负荷列其他列都已经归一化了,所以代码中只对负荷列进行了归一化,如果使用自己…

4大类11种常见的时间序列预测方法总结和代码示例

本篇文章将总结时间序列预测方法,并将所有方法分类介绍并提供相应的python代码示例,以下是本文将要介绍的方法列表: 1、使用平滑技术进行时间序列预测 指数平滑Holt-Winters 法 2、单变量时间序列预测 自回归 (AR)移动平均模型 (MA)自回归…

【深度学习时间序列预测案例】零基础入门经典深度学习时间序列预测项目实战(附代码+数据集+原理介绍)

🚨注意🚨:最近经粉丝反馈,发现有些订阅者将此专栏内容进行二次售卖,特在此声明,本专栏内容仅供学习,不得以任何方式进行售卖,未经作者许可不得对本专栏内容行使发表权、署名权、修改…

如何理解vcc,vdd,vss

常见解释 VCC: Ccircuit 表示电路的意思, 即接入电路的电压 VDD:Ddevice 表示器件的意思, 即器件内部的工作电压 VSS: Sseries 表示公共连接的意思,通常指电路公共接地端电压 个人理解 VCC :双极器件的正,一…

VCC,GND,VSS,VDD的理解

Definition: VCC:Ccircuit 表示电路的意思, 即接入电路的电压。 GND:在电路里常被定为电压参考基点。 VDD:Ddevice 表示器件的意思, 即器件内部的工作电压 VSS:Sseries 表示公共连接的意思,通常指电路公共接…

VCS简介

1.2.1 关于VCS VCS是Verilog Compiled Simulator的缩写。VCS MX是一个编译型的代码仿真器。它使你能够分析,编译和仿真Verilog,VHDL,混合HDL,SystemVerilog,OpenVera和SystemC描述的设计。 它还为您提供了一系列仿真和…

VCC、VDD、VSS以及VBAT的区别

在STM32 的学习中,发现有几种看起来相关的名称,分别是VCC、VDD、VSS、VBAT,在经过搜索查找之后,总结如下: 1.VCC的C是Circuit的意思,是指整个供电回路的电压, 也有人说VCC是双极器件的正极 2.VDD的D是Dev…

Vcc、Vee、Vdd、Vss傻傻分不清楚?

Vcc、Vee、Vdd、Vss傻傻分不清楚? 以下内容源于网络。 电源 左边两个符号均表示电池类直流电源,左边第一个表示电池组,第二个表示单电池。这些符号不一定总是带有 和 - 号。左边第三个(带 和 - 的圆圈符号)表示非电…

semi-supervised classification

半监督学习任务主要分为半监督聚类、半监督分类、半监督回归等问题,我们主要针对半监督分类问题。 半监督学习的假设 基于低密度假设 模型的决策边界不应该将该密度区域划分开,而应该处在低密度区域内。基于平滑化假设 输入空间中&#xf…

Weakly-Supervised Semantic Segmentation via Sub-category Exploration

Weakly-Supervised Semantic Segmentation via Sub-category Exploration Abstract问题 1.Introduction2. Related Work2.1weakly-supervised semantic segmentation(WSSS)弱监督语义分割的初始预测。---Initial Prediction for WSSS.2.2 、Response Refinement for WSSS&#…

Scribble-Supervised Medical Image Segmentation

Scribble-Supervised Medical Image Segmentation via Dual-Branch Network and Dynamically Mixed Pseudo Labels Supervision 摘要 采用草率的分割标注心脏分割双分枝网络:一个编码器,两个解码器动态结合两个解码器的输出伪标签 方法 模型结构 Lpce…

Learning Affinity from Attention End-to-End Weakly-Supervised Semantic Segmentation withTransformers

Learning Affinity from Attention: End-to-End Weakly-Supervised Semantic Segmentation with Transformers 来源:CVPR 2022,武汉大学、京东、悉尼大学 导言 本文是一篇做自然图像弱监督语义分割的论文,利用图像级的类别标签来实现像素级…

Token Contrast for Weakly-Supervised Semantic Segmentation

文章来源:[CVPR2023] Keywords:Weakly-Supervised Semantic Segmentation(WSSS);over-smoothing; ViT 一、本文提出的问题以及解决方案: 本文解决了over-smoothing问题,该问题其实是在之前的GCN网络中提出…

Self-supervised Learning整理

Self-supervised Learning Pre-train Fine-tune Pre-train Fine-tune算是一种Transfer Learning。 首先,假设按照SimCLR中的设定,将一般的模型分为两部分,分别为Encoder和Projection Head。Encoder结构类似于AutoEncoder中的Encoder部分&a…

Supervised Discrete Hashing

Supervised Discrete Hashing 2015 CVPR 问题: 处理施加在追踪的哈希码上的离散约束,使哈希优化具有挑战性(通常是NP- hard)。 解决: 提出了一个新的监督哈希框架,其中的学习目标是生成最优的二进制哈希码用于线性分类。 通过引…

NetVLAD: CNN architecture for weakly supervised place recognition

背景知识: Vector of Locally Aggregated Descriptors(VLAD)image retrieval. 【CC】是广泛使用的图像提取方式,本文是在在这个提取器上做改进;具体是啥下面有介绍 weakly supervised ranking loss 【CC】本文的另外…

Self-Supervised Difference Detection for Weakly-Supervised Semantic Segmentation

Self-Supervised Difference Detection for Weakly-Supervised Semantic Segmentation 摘要1. Introduction2. Related Works3. Method3.1. Difference detection network3.2. Self-supervised difference detection module 论文地址 这篇论文原文的定义实在是太混乱了&#xf…

Unified Deep Supervised Domain Adaptation and Generalization

论文概述 问题研究背景:supervised domain adaptation(SDA),源域有大量带标签的数据,目标域仅有少量可使用的数据 问题的难点:目标域数据不足导致概率分布在语义上很难对齐和区分。对齐指的是源域图片类别之间的关系与目标域图片…

Self-supervised Video Transformer 阅读

目录 1.介绍2.SVT2.1 SVT结构2.2 自监督训练Motion CorrespondencesCross-View Correspondences 2.3 SVT loss 1.介绍 本文是针对video transformer进行自监督训练,从一个给定的视频中,创建具有不同空间大小和帧率的局部和全局时空视图,自监…