13 | 数据变换:考试成绩要求正态分布合理么?

article/2025/9/17 12:13:10

上一讲中我给你讲了数据集成,今天我来讲下数据变换。
如果一个人在百分制的考试中得了 95 分,你肯定会认为他学习成绩很好,如果得了 65 分,就会觉得他成绩不好。如果得了 80 分呢?你会觉得他成绩中等,因为在班级里这属于大部分人的情况。
为什么会有这样的认知呢?这是因为我们从小到大的考试成绩基本上都会满足正态分布的情况。什么是正态分布呢?正态分布也叫作常态分布,就是正常的状态下,呈现的分布情况。
比如你可能会问班里的考试成绩是怎样的?这里其实指的是大部分同学的成绩如何。以下图为例,在正态分布中,大部分人的成绩会集中在中间的区域,少部分人处于两头的位置。正态分布的另一个好处就是,如果你知道了自己的成绩,和整体的正态分布情况,就可以知道自己的成绩在全班中的位置。


另一个典型的例子就是,美国 SAT 考试成绩也符合正态分布。而且美国本科的申请,需要中国高中生的 GPA 在 80 分以上(百分制的成绩),背后的理由也是默认考试成绩属于正态分布的情况。
为了让成绩符合正态分布,出题老师是怎么做的呢?他们通常可以把考题分成三类:
第一类:基础题,占总分 70%,基本上属于送分题;
第二类:灵活题,基础范围内 + 一定的灵活性,占 20%;
第三类:难题,涉及知识面较广的难题,占 10%;
那么,你想下,如果一个出题老师没有按照上面的标准来出题,而是将第三类难题比重占到了 70%,也就是我们说的“超纲”,结果会是怎样呢?
你会发现,大部分人成绩都“不及格”,最后在大家激烈的讨论声中,老师会将考试成绩做规范化处理,从而让成绩满足正态分布的情况。因为只有这样,成绩才更具有比较性。所以正态分布的成绩,不仅可以让你了解全班整体的情况,还能了解每个人的成绩在全班中的位置。

数据变换在数据分析中的角色

我们再来举个例子,假设 A 考了 80 分,B 也考了 80 分,但前者是百分制,后者 500 分是满分,如果我们把从这两个渠道收集上来的数据进行集成、挖掘,就算使用效率再高的算法,结果也不是正确的。因为这两个渠道的分数代表的含义完全不同。
所以说,有时候数据变换比算法选择更重要,数据错了,算法再正确也是错的。你现在可以理解为什么 80% 的工作时间会花在前期的数据准备上了吧。
那么如何让不同渠道的数据统一到一个目标数据库里呢?这样就用到了数据变换。
在数据变换前,我们需要先对字段进行筛选,然后对数据进行探索和相关性分析,接着是选择算法模型(这里暂时不需要进行模型计算),然后针对算法模型对数据的需求进行数据变换,从而完成数据挖掘前的准备工作。


所以你从整个流程中可以看出,数据变换是数据准备的重要环节,它通过数据平滑、数据聚集、数据概化和规范化等方式将数据转换成适用于数据挖掘的形式。
我来介绍下这些常见的变换方法:
1.数据平滑:去除数据中的噪声,将连续数据离散化。这里可以采用分箱、聚类和回归的方式进行数据平滑,我会在后面给你讲解聚类和回归这两个算法;

2.数据聚集:对数据进行汇总,在 SQL 中有一些聚集函数可以供我们操作,比如 Max() 反馈某个字段的数值最大值,Sum() 返回某个字段的数值总和;

3.数据概化:将数据由较低的概念抽象成为较高的概念,减少数据复杂度,即用更高的概念替代更低的概念。比如说上海、杭州、深圳、北京可以概化为中国。

4.数据规范化:使属性数据按比例缩放,这样就将原来的数值映射到一个新的特定区域中。常用的方法有最小—最大规范化、Z—score 规范化、按小数定标规范化等,我会在后面给你讲到这些方法的使用;属性构造:构造出新的属性并添加到属性集中。这里会用到特征工程的知识,因为通过属性与属性的连接构造新的属性,其实就是特征工程。比如说,数据表中统计每个人的英语、语文和数学成绩,你可以构造一个“总和”这个属性,来作为新属性。这样“总和”这个属性就可以用到后续的数据挖掘计算中。在这些变换方法中,最简单易用的就是对数据进行规范化处理。下面我来给你讲下如何对数据进行规范化处理。

数据规范化的几种方法

1. Min-max 规范化

Min-max 规范化方法是将原始数据变换到[0,1]的空间中。用公式表示就是:
新数值 =(原数值 - 极小值)/(极大值 - 极小值)。

2. Z-Score 规范化

假设 A 与 B 的考试成绩都为 80 分,A 的考卷满分是 100 分(及格 60 分),B 的考卷满分是 500 分(及格 300 分)。虽然两个人都考了 80 分,但是 A 的 80 分与 B 的 80 分代表完全不同的含义。
那么如何用相同的标准来比较 A 与 B 的成绩呢?Z-Score 就是用来可以解决这一问题的。
我们定义:新数值 =(原数值 - 均值)/ 标准差。
假设 A 所在的班级平均分为 80,标准差为 10。B 所在的班级平均分为 400,标准差为 100。那么 A 的新数值 =(80-80)/10=0,B 的新数值 =(80-400)/100=-3.2。
那么在 Z-Score 标准下,A 的成绩会比 B 的成绩好。
我们能看到 Z-Score 的优点是算法简单,不受数据量级影响,结果易于比较。不足在于,它需要数据整体的平均值和方差,而且结果没有实际意义,只是用于比较。

3. 小数定标规范化

小数定标规范化就是通过移动小数点的位置来进行规范化。小数点移动多少位取决于属性 A 的取值中的最大绝对值。
举个例子,比如属性 A 的取值范围是 -999 到 88,那么最大绝对值为 999,小数点就会移动 3 位,即新数值 = 原数值 /1000。那么 A 的取值范围就被规范化为 -0.999 到 0.088。
上面这三种是数值规范化中常用的几种方式。

Python 的 SciKit-Learn 库使用

SciKit-Learn 是 Python 的重要机器学习库,它帮我们封装了大量的机器学习算法,比如分类、聚类、回归、降维等。此外,它还包括了数据变换模块。
我现在来讲下如何使用 SciKit-Learn 进行数据规范化。

1. Min-max 规范化

我们可以让原始数据投射到指定的空间[min, max],在 SciKit-Learn 里有个函数 MinMaxScaler 是专门做这个的,它允许我们给定一个最大值与最小值,然后将原数据投射到[min, max]中。默认情况下[min,max]是[0,1],也就是把原始数据投放到[0,1]范围内。
我们来看下下面这个例子:

# coding:utf-8
from sklearn import preprocessing
import numpy as np
# 初始化数据,每一行表示一个样本,每一列表示一个特征
x = np.array([[ 0., -3.,  1.],[ 3.,  1.,  2.],[ 0.,  1., -1.]])
# 将数据进行[0,1]规范化
min_max_scaler = preprocessing.MinMaxScaler()
minmax_x = min_max_scaler.fit_transform(x)
print minmax_x

运行结果:

[[0.         0.         0.66666667][1.         1.         1.        ][0.         1.         0.        ]]

2. Z-Score 规范化

在 SciKit-Learn 库中使用 preprocessing.scale() 函数,可以直接将给定数据进行 Z-Score 规范化。

from sklearn import preprocessing
import numpy as np
# 初始化数据
x = np.array([[ 0., -3.,  1.],[ 3.,  1.,  2.],[ 0.,  1., -1.]])
# 将数据进行Z-Score规范化
scaled_x = preprocessing.scale(x)
print scaled_x

运行结果:

[[-0.70710678 -1.41421356  0.26726124][ 1.41421356  0.70710678  1.06904497][-0.70710678  0.70710678 -1.33630621]]

这个结果实际上就是将每行每列的值减去了平均值,再除以方差的结果。
我们看到 Z-Score 规范化将数据集进行了规范化,数值都符合均值为 0,方差为 1 的正态分布。

3. 小数定标规范化

我们需要用 NumPy 库来计算小数点的位数。NumPy 库我们之前提到过。
这里我们看下运行代码:

# coding:utf-8
from sklearn import preprocessing
import numpy as np
# 初始化数据
x = np.array([[ 0., -3.,  1.],[ 3.,  1.,  2.],[ 0.,  1., -1.]])
# 小数定标规范化
j = np.ceil(np.log10(np.max(abs(x))))
scaled_x = x/(10**j)
print scaled_x

运行结果:

[[ 0.  -0.3  0.1][ 0.3  0.1  0.2][ 0.   0.1 -0.1]]

数据挖掘中数据变换比算法选择更重要

在考试成绩中,我们都需要让数据满足一定的规律,达到规范性的要求,便于进行挖掘。这就是数据变换的作用。
如果不进行变换的话,要不就是维数过多,增加了计算的成本,要不就是数据过于集中,很难找到数据之间的特征。
在数据变换中,重点是如何将数值进行规范化,有三种常用的规范方法,分别是 Min-Max 规范化、Z-Score 规范化、小数定标规范化。其中 Z-Score 规范化可以直接将数据转化为正态分布的情况,当然不是所有自然界的数据都需要正态分布,我们也可以根据实际的情况进行设计,比如取对数 log,或者神经网络里采用的激励函数等。


在最后我给大家推荐了 Python 的 sklearn 库,它和 NumPy, Pandas 都是非常有名的 Python 库,在数据统计工作中起了很大的作用。SciKit-Learn 不仅可以用于数据变换,它还提供了分类、聚类、预测等数据挖掘算法的 API 封装。后面我会详细给你讲解这些算法,也会教你如何使用 SciKit-Learn 工具来完成数据挖掘算法的工作。
最后给你留道思考题吧,假设属性 income 的最小值和最大值分别是 5000 元和 58000 元。利用 Min-Max 规范化的方法将属性的值映射到 0 至 1 的范围内,那么属性 income 的 16000 元将被转化为多少?


http://chatgpt.dhexx.cn/article/BeaX4nru.shtml

相关文章

matlab蒙特卡罗变量变换的分布,使用 copula 仿真相关随机变量

仿真输入之间的相关性 蒙特卡罗模拟的设计决策之一是为随机输入选择概率分布。为每个变量选择一种分布往往很简单,但确定输入之间应该存在什么样的相关性却可能不那么简单。理想情况下,仿真的输入数据应反映要建模的实际数量之间已知的相关性。然而,判断仿真中的任何相关性时…

Lammps-如何采用MATLAB计算径向分布函数(RDF)

关注 M r . m a t e r i a l , \color{Violet} \rm Mr.material\ , Mr.material , 更 \color{red}{更} 更 多 \color{blue}{多} 多 精 \color{orange}{精} 精 彩 \color{green}{彩} 彩! 主要专栏内容包括: †《LAMMPS小技巧》: ‾ \textbf…

Python获取好友地区分布及好友性别分布!

Python学习交流群:1004391443 利用Python wxpy 可以快速的查询自己好友的地区分布情况,以及好友的性别分布数量。还可以批量下载好友的头像,拼接成大图。 本次教程是基于上次机器人后的,所有依赖模块都可以复用上次的&#xff…

MATLAB 常用函数 size()Zeros() ones() inf() ceil()等取整函数 randperm() find() sum() cumsum()

1.size():获取矩阵的行数和列数 1、ssize(A),当只有一个输出参数时,返回一个行向量,该行向量的第一个元素是矩阵的行数,第二个元素是矩阵的列数。 2、[r,c]size(A),当有两个输出参数时,size函数…

卡方分布和卡方验证的关系理解,以及Python实现

卡方分布 定义:设 X1…Xn是服从标准正态分布的随机变量,则称统计量 服从自由度为n的卡方分布,自由度为n时,他的期望是n,方差为2n 他是标准正态分布变量的平方和,网上找了一张概率密度图: 然…

c语言学习进阶-C语言程序产生正态分布随机数

C语言程序产生正态分布随机数 目录 C语言程序产生正态分布随机数**中心极限定理(大数定理)****Hasiting有理逼近法:****反函数产生给定分布的随机数法:****Box-Muller法得到服从正态分布的随机数:****matlab 验证生成随…

高斯分布的乘积

假设有两个高斯分布: p 1 ( x ) ( 2 π σ 1 2 ) − 1 2 e x p { − 1 2 ( x − μ 1 ) 2 σ 1 2 } p_1(x) (2\pi\sigma_1^2)^{-\frac{1}{2}}exp\{ -\frac{1}{2} \frac{(x-\mu_1)^2}{\sigma_1^2} \} p1​(x)(2πσ12​)−21​exp{−21​σ12​(x−μ1​)2​} p …

14 | 正态分布

文章目录 1、正态分布:2、数据的变换3、 数据进行规范处理的三种方法3.1 Min-max 规范化3.2 Z-Score 规范化 4、 Python 的 SciKit-Learn 库使用4.1 Min-max 规范化4.2 Z-Score 规范化 5、 总结: 1、正态分布: 什么是正态分布呢?…

【小白话通信】连续分布的产生

由于篇幅有限,前一篇文章《离散分布的产生》中只讲述了用均匀分布产生离散分布的方法,那么本文接着讲如何利用均匀分布产生连续分布的方法。 连续分布 连续分布主要有以下几种:均匀分布 伽马分布 正态分布 贝塔分布 柯西分布 对数正态分布 双…

论文变量分布图的绘制

论文变量分布图的绘制 在近红外变量选择的论文中,需要对选择的波段进行可视化,以下介绍两种变量分布图的绘制。MATLAB绘制点图 直接上代码 %数据输入,一行多列 load(cor1_huatu.mat) load(RSR1_huatu.mat) load(SSC1_huatu.mat) load(sopsr…

MATLAB一维数据分布情况(稳定程度))

MATLAB一维数据分布情况(稳定程度) 一、具体实现二、测试三、其他 by HPC_ZY 搞研究的小伙伴们,经常需要对实验结果进行分析,获取实验的稳定性等。这里提供一个小函数,能对一维数据(实验结果)进…

Python数据科学numpy的运算、分布函数和矩阵

本文介绍numpy的常用运算、统计分布函数和矩阵的基础用法 numpy的一元多元运算,给我们做数据处理分析做基础,忘记的时候可以查看文档,常用的理解记忆就行。以下代码演示前提均以import numpy as np为前提 1. 一元运算: 运算函数…

IEEE802.11信道PDP与频谱分布

%实现IEEE802.11信道仿真,画出IEEE802.11信道的PDP曲线与频谱图 clear,clf scale 1e-9;%纳秒量级 Ts 50*scale;%采样时间间隔,50ns t_rms25*scale;%RMS时延扩展,25ns num_ch10000;%信道数 N128;%FFT长度 PDPIEEE802_11_model(t_rms,Ts);%调…

计算二维离散随机变量的联合概率分布

一. 定义 Joint probability distribution: 给定至少两个随机变量X,Y,…, 它们的联合概率分布(Joint probability distribution)指的是每一个随机变量的值落入特定范围或者离散点集合内的概率. 对于只有两个随机变量的情况, 称为二元分布(bivariate distribution). 联合概率…

matlab 分布拟合,曲线拟合和分布拟合 - MATLAB Simulink Example - MathWorks 中国

在曲线拟合与分布拟合之间进行选择 曲线拟合和分布拟合是不同类型的数据分析。 当您要将某个响应变量建模为预测变量的函数时,请使用曲线拟合。 当您要为单一变量的概率分布建模时,请使用分布拟合。 曲线拟合 在以下试验数据中,预测变量为 time,即服用药物之后的时间。响应…

MATLAB如何画数据分布曲线,Matlab绘制累积分布函数(CDF)

CDF示例代码&#xff1a; cdf.mfunction [xTime,yPercentage]cdf(initValue,step,endValue,sample); xTime[]; yPercentage[]; totalNumlength(sample); for iinitValue:step:endValue templength(find(sample<i))/totalNum; xTime[xTime,i]; yPercentage[yPercentage,temp]…

【得物技术】如何测试概率性事件 - 二项分布置信区间

前言 &#xfeff; 日常开发测试可能会遇到这样一种情况&#xff0c;有一个接口或方法概率触发&#xff0c;那么需要多少次抽样&#xff0c;落在一个什么区间内&#xff0c;才能断定是否按照设定概率进行呢&#xff1f; &#xfeff; 本文将以二项分布作为研究手段&#xf…

python画累积分布图_python累积分布图

在与@EOL进行了决定性的讨论之后,我想使用随机高斯样本作为摘要发布我的解决方案(左上角): import numpy as np import matplotlib.pyplot as plt from math import ceil, floor, sqrt def pdf(x, mu=0, sigma=1): """ Calculates the normal distributions p…

2021-10-24 我的第五次java作业:二项分布和双骰子赌博问题

我的第五次java作业 题目&#xff1a; 二项分布是n次独立试验中成功次数k的离散概率分布&#xff0c;其中每次试验成功的概率为p。利用Java Math类中提供的数学函数&#xff0c;给出二项分布X~B(n, p, k)的实现代码并进行测试。例如&#xff0c;当用户给定n20, p0.1, k5的概率…

记一次使用Cobar踩到的坑

起因 起因是因为日志里经常报出锁等待超时的错误&#xff0c;并且这个是环环相扣的&#xff0c;一个锁等待会直接引发另外的锁等待&#xff0c;所以危害非常严重&#xff0c;影响非常深远。寻找原因发现是C3P0报出了DEADLOCK&#xff0c;如下图所示&#xff1a; 分析 可以…