访问django后台,提示CSRF验证失败. 请求被中断.Referer checking failed - **** does not match any trust

article/2025/9/24 8:17:08

1.非debug模式看到的报错
在这里插入图片描述

2.settings打开debug模式,才能把报错信息看的详细
在这里插入图片描述
3.去settings.py中,找到CsrfViewMiddleware 中间件,点击进入
在这里插入图片描述
4.搜索匹配报错信息
在这里插入图片描述
5.往下看看用到这个关键字的地方
在这里插入图片描述
6.从源码第一行开始看
在这里插入图片描述
7.settings.py,添加这句代码

CSRF_TRUSTED_ORIGINS = ['http://192.168.1.200']

在这里插入图片描述
8.重新启动项目,然后访问后台,可以了

在这里插入图片描述


http://chatgpt.dhexx.cn/article/rkrqfJKq.shtml

相关文章

安全认证中的CSRF

1、什么叫做CSRF攻击 简单地说,就是说恶意网站,虽然没有盗取你的用户名和密码信息,但是却可以伪装成你,然后登录到银行,或者等危险网站,模拟你进行操作。利用的就是cookies这个特性,即浏览器提供…

csrf验证问题 -- 不同域名下Iframe嵌套Cookie失效导致csrf验证失败

问题原因 Cookie:SameSite Chrome 51 开始,浏览器的 Cookie 新增加了一个SameSite属性,主要用于防止CSRF攻击和用户追踪。 cookie的SameSite属性用来限制第三方Cookie,从而减少安全风险(防止CSRF)。 SameSite可以有下面三种值:…

接口报403,报CSRF验证失败的问题

问题定位:后台两个接口重名,走了优先级更高的接口,接口没有过滤CSRF; 一、csrf是什么 CSRF(Cross-site request forgery)跨站请求伪造,是一种常见的web安全漏洞,概括地说就是指&…

Django的csrf豁免:解决CSRF验证失败,请求被中断问题

1.CSRF介绍 跨站请求伪造(英语:Cross-site request forgery),也被称为 one-click attack 或者 session riding,通常缩写为 CSRF 或者 XSRF, 是一种挟制用户在当前已登录的Web应用程序上执行非本意的操作的…

解决:禁止访问 (403) CSRF验证失败

在测试Django框架POST请求方式时&#xff0c;程序报错如下 在确保访问安全的情况下有一下两种方式&#xff1a; 1、在相应html文件form代码块中添加如下代码&#xff1a; <form method"post" action"/method_show/">{% csrf_token %} <!-- 改行…

Ubiquant LGBM Baseline 九坤量化大赛 版本44

数据描述&#xff1a; 该数据集包含来自数千项投资的真实历史数据的特征。你的挑战是预测与做出交易决策相关的模糊指标的价值。 Your challenge is to predict the value of an obfuscated metric relevant for making trading decisions. 这是一个代码竞赛&#xff0c;它依…

lgbm的roc曲线,auc计算

lgbm模型画ROC曲线 1、得到分类的概率 import numpy as npimport pandas as pdimport lightgbm as lgbfrom sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test \train_test_split(data.iloc[:, 0:-1], # featuredata.iloc[:, -1], # label…

LightGBM C++使用问题

~~~~~~~~~~~~~~~~~~~~串行single sample predict~~~~~~~~~~~~~~~~~~~~~~~~~ python下已测试通过&#xff0c;无问题&#xff1a; 然而C下问题是&#xff1a; 1&#xff0c;首先是与python下概率不一致&#xff1b; 2&#xff0c;然后是所有输入的结果都一样 初步怀疑版本问题…

kaggle学习笔记-otto-baseline5-LGBM的使用

数据处理 import polars as pltrain pl.read_parquet(../input/otto-train-and-test-data-for-local-validation/test.parquet) train_labels pl.read_parquet(../input/otto-train-and-test-data-for-local-validation/test_labels.parquet)def add_action_num_reverse_chr…

LightGBM(LGB)

转载自littlemichelle LightGBM&#xff08;Light Gradient Boosting Machine&#xff09;是一个实现GBDT算法的框架&#xff0c;支持高效率的并行训练&#xff0c;并且具有更快的训练速度、更低的内存消耗、更好的准确率、支持分布式可以快速处理海量数据等优点。 背景 常用…

lgbm参数分析及回归超参数寻找

参考&#xff1a;lgbm的github: https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst 代码来源参见我另一篇博客&#xff1a; https://blog.csdn.net/ssswill/article/details/85217702 网格搜索寻找超参数&#xff1a; from sklearn.model_selection imp…

LGBM 模型结果 图形展示

一、LGBM 模型结果 图形展示&#xff1a; 1、模型训练 train_x train[feas_x] train_y train[target].astype(int).copy() test_x, test_y test[feas_x], test[target] lgb_clf lgb.LGBMClassifier(objectivebinary,metricauc,num_leaves20,max_depth2,learning_rate0.06,…

Python量化交易05——基于多因子选择和选股策略(随机森林,LGBM)

参考书目:深入浅出Python量化交易实战 在机器学习里面的X叫做特征变量&#xff0c;在统计学里面叫做协变量也叫自变量&#xff0c;在量化投资里面则叫做因子&#xff0c;所谓多因子就是有很多的特征变量。 本次带来的就是多因子模型&#xff0c;并且使用的是机器学习的强大的非…

LightGBM(lgb)详解

1. LightGBM简介 GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型&#xff0c;其主要思想是利用弱分类器&#xff08;决策树&#xff09;迭代训练以得到最优模型&#xff0c;该模型具有训练效果好、不易过拟合等优点。GBDT不仅在工业界应用广泛&#…

[机器学习] 模型融合GBDT(xgb/lgbm/rf)+LR 的原理及实践

目录 一、原理 GBDT LR 是什么,用在哪 二、说明 GBDT LR 的结构 RF LR ? Xgb LR? GBDT LR 模型提升 三、实践 1 如何获得样本落在哪个叶子节点 2 举例 2.2.1 训练集准备 2.2.2 RFLR 2.2.3 GBDTLR 2.2.4 XgboostLR 2.2.5 单独使用RF, GBDT和Xgboost 2.2.6 …

xgboost 与 lgbm

相关性分析模型可行性报告 基于数值的模型-xgboost 简介 XGBoost是一个优化的分布式梯度提升库&#xff0c;旨在高效&#xff0c;灵活和便携。它在梯度提升框架下实现机器学习算法。XGBoost提供了一个并行树提升&#xff08;也称为GBDT&#xff0c;GBM&#xff09;&#xff…

一文彻底看懂LightGBM

本文适合有集成学习与XGBoost基础的读者了解LightGBM算法。 序 LightGBM是基于XGBoost的改进版&#xff0c;在处理样本量大、特征纬度高的数据时&#xff0c;XGBoost效率和可扩展性也不够理想&#xff0c;因为其在对树节点分裂时&#xff0c;需要扫描每一个特征的每一个特征值…

LGBM算法

LGBM 算法定义算法实践其他 算法概念 Light GBM is a gradient boosting framework that uses tree based learning algorithm。 传统的GBDT算法存在的问题&#xff1a; 如何减少训练数据 常用的减少训练数据量的方式是down sample。例如在[5]中&#xff0c;权重小于阈值的…

LGBM调参方法学习

一、了解LGBM参数&#xff1a; LGBM是微软发布的轻量梯度提升机&#xff0c;最主要的特点是快&#xff0c;回归和分类树模型。使用LGBM首先需要查看其参数含义&#xff1a; 微软官方github上的说明&#xff1a; https://github.com/Microsoft/LightGBM/blob/master/docs/Param…

使用线性回归、LGBM对二手车价格进行预测

使用线性回归、LGBM对二手车价格进行预测 目录 使用线性回归、LGBM对二手车价格进行预测说明 数据导入、查看和清洗数据说明导入训练集导入测试集合并数据查看数据整体情况处理数据检查并处理缺失变量 EDA年份和价格地区和价格前任里程和价格燃料类型和价格传动装置类型Mileage…