ResNet-50 结构

article/2025/9/18 3:43:39

ResNet有2个基本的block,一个是Identity Block,输入和输出的dimension是一样的,所以可以串联多个;另外一个基本block是Conv Block,输入和输出的dimension是不一样的,所以不能连续串联,它的作用本来就是为了改变特征向量的dimension

因为CNN最后都是要把输入图像一点点的转换成很小但是depth很深的feature map,一般的套路是用统一的比较小的kernel(比如VGG都是用3*3),但是随着网络深度的增加,output的channel也增大(学到的东西越来越复杂),所以有必要在进入Identity Block之前,用Conv Block转换一下维度,这样后面就可以连续接Identity Block.

Conv Block:

Identity Block:

其实就是在shortcut path的地方加上一个conv2D layer(1*1 filter size),然后在main path改变dimension,并与shortcut path对应起来.

ResNetV1-50流程如下, 不使用bottleneck, 且只有resnetv1在initial_conv后面做BN和Relu:

block_sizes=[3, 4, 6, 3]指的是stage1(first pool)之后的4个layer的block数, 分别对应res2,res3,res4,res5,每一个layer的第一个block在shortcut上做conv+BN, 即Conv Block
inputs: (1, 720, 1280, 3)
initial_conv:conv2d_fixed_padding()1. kernel_size=7, 先做padding(1, 720, 1280, 3) -> (1, 726, 1286, 3)2. conv2d kernels=[7, 7, 3, 64], stride=2, VALID 卷积. 7x7的kernel, padding都为3, 为了保证左上角和卷积核中心点对其(1, 726, 1286, 3) -> (1, 360, 640, 64)3. BN, Relu (只有resnetv1在第一次conv后面做BN和Relu)
initial_max_pool:k=3, s=2, padding='SAME', (1, 360, 640, 64) -> (1, 180, 320, 64)
以下均为不使用bottleneck的building_block
block_layer1:(有3个block, layer间stride=1(上一层做pool了), 64个filter, 不使用bottleneck(若使用bottleneck 卷积核数量需乘4))1. 第一个block:Conv Block有projection_shortcut, 且strides可以等于1或者2Identity Block没有projection_shortcut, 且strides只能等于1`inputs = block_fn(inputs, filters, training, projection_shortcut, strides, data_format)`shortcut做[1, 1, 64, 64], stride=1的conv和BN, shape不变然后和主要分支里input做3次卷积后的结果相加, 一起Relu, 注意block里最后一次卷积后只有BN没有Reluinput:    conv-bn-relu-conv-bn-relu-conv-bn  和shortcut相加后再做relushortcut: conv-bn                            shortcut: [1, 1, 64, 64], s=1, (1, 180, 320, 64) -> (1, 180, 320, 64)input做两次[3, 3, 64, 64], s=1的卷积, shape不变(1, 180, 320, 64) -> (1, 180, 320, 64) -> (1, 180, 320, 64)inputs += shortcut, 再relu2. 对剩下的2个block, 每个block操作相同:`inputs = block_fn(inputs, filters, training, None, 1, data_format)`shortcut直接和input卷积结果相加, 不做conv-bninput做两次[3, 3, 64, 64], s=1的卷积, shape不变(1, 180, 320, 64) -> (1, 180, 320, 64) -> (1, 180, 320, 64)inputs += shortcut, 再relu
block_layer2/3/4同block_layer1, 只是每个layer的identity block数量不同, 卷积核数量和layer间stride也不同, 不过仍然只有第一个conv block的shortcut做conv-bn
block_layer2: 4个block, 128个filter, layer间stride=2 (因为上一层出来后没有pool)1. 第一个block:对shortcut做kernel=[1, 1, 64, 128], s=2的conv和BN, (1, 180, 320, 64) -> (1, 90, 160, 128)对主要分支先做kernel=[3, 3, 64, 128], s=2的卷积, padding='VALID', (1, 180, 320, 64) -> (1, 90, 160, 128)再做kernel=[3, 3, 128, 128], s=1的卷积, padding='SAME', (1, 90, 160, 128) -> (1, 90, 160, 128)2. 剩下的3个block, 每个block操作相同:shortcut不操作直接和结果相加做Relu对主要分支做两次[3, 3, 128, 128], s=1的卷积, padding='SAME', (1, 90, 160, 128) -> (1, 90, 160, 128) -> (1, 90, 160, 128)
block_layer3: 6个block, 256个filter, layer间stride=21. 第一个block:对shortcut做kernel=[1, 1, 128, 256], s=2的conv和BN, (1, 90, 160, 128) -> (1, 45, 80, 256)对主要分支先做kernel=[3, 3, 128, 256], s=2的卷积, padding='VALID', (1, 90, 160, 128) -> (1, 45, 80, 256)再做kernel=[3, 3, 256, 256], s=1的卷积, padding='SAME', (1, 45, 80, 256) -> (1, 45, 80, 256)2. 剩下的5个block, 每个block操作相同:shortcut不操作直接和结果相加做Relu对主要分支做两次[3, 3, 256, 256], s=1的卷积, padding='SAME', (1, 45, 80, 256) -> (1, 45, 80, 256) -> (1, 45, 80, 256)
block_layer4: 3个block, 512个filter, layer间stride=21. 第一个block:对shortcut做kernel=[1, 1, 256, 512], s=2的conv和BN, (1, 45, 80, 256) -> (1, 23, 40, 512)对主要分支先做kernel=[3, 3, 256, 512], s=2的卷积, padding='VALID', (1, 45, 80, 256) -> (1, 23, 40, 512)再做kernel=[3, 3, 512, 512], s=1的卷积, padding='SAME', (1, 23, 40, 512) -> (1, 23, 40, 512)2. 剩下的2个block, 每个block操作相同:shortcut不操作直接和结果相加做Relu对主要分支做两次[3, 3, 512, 512], s=1的卷积, padding='SAME', (1, 23, 40, 512) -> (1, 23, 40, 512)
avg_pool, 7*7
FC, output1000
softmax
输出prediction

Keras版结构如下, res2a代表stage2的第1个block, branch1是shortcut path, branch2是main path, branch2a代表是main path的第1个卷积:


http://chatgpt.dhexx.cn/article/fP1VRXUM.shtml

相关文章

ResNet 简介

ResNet 本文对resnet进行介绍,文章目录如下: ResNet 历史ResNet 亮点为何层数不能太深residual 残差模块介绍网络结构BN 层迁移学习 本文参考资料有: 6.1 ResNet网络结构,BN以及迁移学习详解 https://www.bilibili.com/video/…

Resnet

再上一偏博文中我们说到越复杂的问题需要越深层的神经网络拟合,但是越深层的神经网络越难训练,原因可能是过拟合以及损失函数的局部最优解过多(鞍点过多?导致经过相同的epoch更深的网络的trainerror大于较浅的网络,因为…

ResNet网络详解

ResNet ResNet在2015年由微软实验室提出,斩获当年lmageNet竞赛中分类任务第一名,目标检测第一名。获得coco数据集中目标检测第一名,图像分割第一名。 ResNet亮点 1.超深的网络结构(突破1000层) 2.提出residual模块 3.使用Batch Normalizat…

1 通俗易懂解释Resnet50

通俗易懂Resnet50网络结构分析 1 Why(该网络要解决什么样的问题)1.1 什么叫梯度消失和梯度爆炸 2 How(如何解决该问题)2.1 直观解释2.2 残差是什么2.3 网络结构 3 what 结果怎么样 1 Why(该网络要解决什么样的问题) 理论上网络越来越深,获取的信息越多,…

ResNet50网络结构

代码: import keras keras.utils.plot_model(keras.applications.ResNet50(include_topTrue,input_shape(224,224,3),weightsNone), to_fileimage_model.png, show_shapesTrue) ResNet50的标准输入为224x224,avg_pool(-3层)及之…

resnet18与resnet50

ResNet18的18层代表的是带有权重的 18层,包括卷积层和全连接层,不包括池化层和BN层。 Resnet论文给出的结构图 参考ResNet详细解读 结构解析: 首先是第一层卷积使用7∗77∗7大小的模板,步长为2,padding为3。之后进行…

长文解析Resnet50的算法原理

大家好啊,我是董董灿。 恭喜你发现宝藏了。收藏起来吧。 前言 从打算写图像识别系列文章开始已经快2个月了,目前写了有9篇文章,几乎涵盖了Renset50这一CNN网络95%的算法。 今天整理了下,修复一些笔误和表述错误,整…

【pytorch】ResNet18、ResNet20、ResNet34、ResNet50网络结构与实现

文章目录 ResNet主体BasicBlockResNet18ResNet34ResNet20 Bottleneck BlockResNet50 ResNet到底解决了什么问题 选取经典的早期Pytorch官方实现代码进行分析 https://github.com/pytorch/vision/blob/9a481d0bec2700763a799ff148fe2e083b575441/torchvision/models/resnet.py 各…

神经网络学习小记录20——ResNet50模型的复现详解

神经网络学习小记录20——ResNet50模型的复现详解 学习前言什么是残差网络什么是ResNet50模型ResNet50网络部分实现代码图片预测 学习前言 最近看yolo3里面讲到了残差网络,对这个网络结构很感兴趣,于是了解到这个网络结构最初的使用是在ResNet网络里。 …

彻底搞懂ResNet50

pytorch实现resnet50代码如下: (1)一个block实现,如1x1,64,3x3,64,1x1,256。这段代码中,1x1的卷积核只是为了改变输出通道数,3x3的卷积可能改变卷…

【ResNet】Pytorch从零构建ResNet50

Pytorch从零构建ResNet 第一章 从零构建ResNet18 第二章 从零构建ResNet50 文章目录 Pytorch从零构建ResNet前言一、Res50和Res18的区别?1. 残差块的区别2. ResNet50具体结构 二、ResNet分步骤实现三、完整例子测试总结 前言 ResNet 目前是应用很广的网络基础框架&…

ResNet介绍

ResNet介绍 1 简要概括 ResNet(Residual Neural Network)由微软研究院的Kaiming He等四名华人提出,通过使用ResNet Unit成功训练出了152层的神经网络,并在ILSVRC2015比赛中取得冠军,在top5上的错误率为3.57%&#xff0…

resnet 20 和resnet 56

resnet是什么 在论文中,存在resnet20和resnet56,之前没注意,现在仔细了解后才发觉和标准的ResNet有差异,可参考resnet-50 vs resnet-56(或者18 vs 20)的明显区别在哪,性能差的好多?…

ResNet详解

1.什么是ResNet? ResNet 网络是在 2015年 由微软实验室中的何凯明等几位大神提出,斩获当年ImageNet竞赛中分类任务第一名,目标检测第一名。获得COCO数据集中目标检测第一名,图像分割第一名。 2.网络中的亮点 1.超深的网络结构&a…

关于ResNet50的解读

说起ResNet必然要提起He大佬,这真是神一样的存在,这不,不久前又有新的突破RegNet,真是厉害啊。 ResNet开篇之作在此,后面又出了各种变形啥的,ResNeXt,inception-ResNet等等吧,He大佬…

【深度学习】resnet-50网络结构

最近许多目标检测网络的backbone都有用到resnet-50的部分结构,于是找到原论文,看了一下网络结构,在这里做一个备份,需要的时候再来看看。 整体结构 layer0 首先是layer0,这部分在各个网络都一样,如图&…

一张图看懂Resnet50与Resnet101算法

直接上流程图,算法很清晰。 仅包括卷积层和全连接层,不包括池化层,正好50层。 相比于ResNet_50,ResNet_101就是在上图第3个大虚线框多了17个bottleneck,17*350101,说白了就是将下图复制17个加入上图的第3个…

什么是Resnet50模型?

1 深度残差网络 随着CNN的不断发展,为了获取深层次的特征,卷积的层数也越来越多。一开始的 LeNet 网络只有 5 层,接着 AlexNet 为 8 层,后来 VggNet 网络包含了 19 层,GoogleNet 已经有了 22 层。但仅仅通过增加网络层…

resnet-50介绍(一)

这篇文章讲解的是使用Tensorflow实现残差网络resnet-50. 侧重点不在于理论部分,而是在于代码实现部分。在github上面已经有其他的开源实现,如果希望直接使用代码运行自己的数据,不建议使用本人的代码。但是如果希望学习resnet的代码实现思路&…