tvm学习笔记(五):tvm工作原理

article/2025/10/3 19:46:24

    一、总体流程:

          TVM的工作流程:首先,将网络表示成统一的表示形式(Intermediate Representation),并进行一些可重用的图优化;然后,利用不同的后端生成对应设备代码,如图1所示。

                                                                        图1 tvm 工作流程(摘自参考资料[1])

          首先,将不同的框架下的模型载入,并使用NNVM将模型转换成中间表示的计算图,并对图进行优化,如 算子融合、减枝、图变换等;然后,TVM对张量运算进行优化,这里,TVM将代码的调度和计算分开(计算:定义需要进行的运算,调度:具体如何来进行运算);最后,使用不同的后端,来生成对应设备代码,如图1所示,使用LLVM生成x86,ARM和Javescript/WASM系统代码,OpenCL、Metal和CUDA生成对应的GPU代码,通过这种中间堆栈(IR Stack)表示的方式,实现端到端的深度学习模型优化和部署,这种方式将实现op的复杂度转移到了编译规则的复杂度。

二、优化计算图

1、算子融合(operator Fusion)

          算子融合,即将多个算子组合在一起放到同一个核中,通过算子融合的方式,我们不需要将中间结果保存到全局内存,进而减少执行所需要的时间,我们已知的算子融合分为四种,如图2所示(自己没翻译好,下面内容摘自参考资料[5]):

                 

                                                                               图2 算子融合示意图(摘自参考资料[4])

injective(单射性):一到一的映射,如:add / sqrt / exp / sum 等操作算子(operator);

reduction(简约):多到少的映射,如:sum / max / min等操作操作算子(operator);

complex-out-fusable:逐元素复用映射到输出,如:conv2d / bn /  relu等操作算子(operator);

opaque:不能被复用

像这种算子组合太多了,专门针对这些组合手写底层优化不太现实,这里就需要做一些自动代码生成。

 

2、数据布局变换:

          当代计算架构中,从内存中载入数据的时间要远远大于进行一次浮点运算所耗费的时间,所以我们经常想要重复使用载入内存或寄存器中的数据。

        首先我们看一下3x3的卷积操作,如图3所示:

                                               图3 无tile的3x3卷积操作示意图(摘自参考资料[3])

          不采用tile的方式,每个线程载入一个3x3大小输入得到一个输出,16个线程需要进行16x9次数据载入,如果我们采用tile方式,如图4所示:

                                                   图4 有tile的数据载入(摘自参考资料[3])

          采用tile方式时,每个线程载入4x4大小输入得到2x2大小的输出,4个线程需要进行4x16次数据载入。

三、优化张量计算

          张量表达语言(Tensor Expression Language):直接描述每一个单元如何计算

          这样的tensor表示(数学公式表达),可以涵盖几乎所有的高层算子,可以很容易做代码生成,因为对应的表达式已经确定了。然后就是将tensor expression映射到不同硬件上:

          这里涉及到的问题有:算子张量化的问题、cache问题、数据类型问题(float32,float16,、int8)

      解决方案: 将所有手工优化的可能(10亿级别的)总结起来,并将他们作为搜索空间的一部分,然后自动进行搜索,这里采用auto-tvm来自动进行搜素每个算子的最优实现。

      为什么相信tvm的上限比手写优化做得更好?

       如果是机器和人同时去解决一个问题的优化,人通过不断的去解决,可以做到比机器好一些,实际上,机器不一定要和人解决一样的问题,比如融合算子,其可能性太多,人可能没有力气去优化这些融合算子,机器通过去解决这些人没有解决的问题,进而达到更高的效率;反过来,当搜索空间越来越大,包含了人所有的搜索空间时,这时,哪怕直接和人的手写优化一一对应,机器也可以达到和人做的优化差不多,甚至更好都有可能。

        总结起来就是:

 

~~~未完待续~~~

参考资料:

[1] https://tvm.ai/2017/08/17/tvm-release-announcement

[2] https://www.cnblogs.com/jxr041100/p/8288381.html

[3] https://tvm.ai/2017/08/22/Optimize-Deep-Learning-GPU-Operators-with-TVM-A-Depthwise-Convolution-Example

[4] Chen T , Moreau T , Jiang Z , et al. TVM: End-to-End Optimization Stack for Deep Learning[J]. 2018.

[5] https://blog.csdn.net/sanallen/article/details/79402174

 


http://chatgpt.dhexx.cn/article/eVc6rEve.shtml

相关文章

TVM系列 - 量化

TVM系列 - 量化 TVM量化原理TVM量化现状TVM量化原理介绍TVM量化代码解析 TVM量化原理 关于量化的方式其实已经有足够的文章去了解目前最主流的两种:离线量化及训练时量化(大家应该能理解,其实就是伪量化),而tvm的作者…

TVM-初识TVM

目录 TVM简介那么TVM是什么?TVM做了哪些工作 TVM简介 随着深度学习的发展,深度学习的能力可以说是越来越强大,识别率节节攀升,与此同时,深度学习框架也变得越来越多,目前比较主流的深度学习框架包括&#…

【TVM系列二】TVM介绍

文章同步更新在公众号 AIPlayer,欢迎扫码关注,共同进步 目录 一、TVM的工作流程 1、整体流程 2、关键数据结构 3、Transformations 4、搜索空间和基于机器学习的转换 5、目标代码转化 二、逻辑架构组件 三、运行TVM实例 1、交叉编译runtime 2、…

TVM:简介

TVM:简介概述 Apache TVM 是一个用于 CPU、GPU 和机器学习加速器的开源机器学习编译器框架。它旨在使机器学习工程师能够在任何硬件后端上高效地优化和运行计算。本教程的目的是通过定义和演示关键概念,引导您了解 TVM 的所有主要功能。新用户应该能够从…

TVM简介

TVM与LLVM的架构非常相似。TVM针对不同的深度学习框架和硬件平台,实现了统一的软件栈,以尽可能高效的方式,将不同框架下的深度学习模型部署到硬件平台上。 如果从编译器的视角来看待如何解决这个问题,各种框架写的网络可以根据特…

TVM概述

TVM TVM是陈天奇领导的一个DL加速框架项目。它处于DL框架(如tensorflow、pytorch)和硬件后端(如CUDA、OpenCL)之间,兼顾了前者的易用性和后者的执行效率。 官网: https://tvm.apache.org/ 代码&#xf…

TVM[2] —— TVM简介和发展

TVM[2] —— TVM简介和发展 文章目录 TVM[2] —— TVM简介和发展1. TVM 简介1.1 是什么1.2 做什么1.3 基本步骤 2. TVM 的发展2.1 现状——四类抽象2.2 问题——两向boundary2.3 未来——从箭头到圈2.4 New Capabilities with Unity 下期预告:3. TVM 技术栈全解析&a…

TVM 学习指南(个人版)

文章目录 0x0. 前言0x1. 前端0x1.1 Tensor IR(TIR)0x1.2 了解tvm.ir基础设施0x1.3 Relay IR0x1.4 RelaxD0:数据流块作为第一优先级的构造D1:形状推导作为第一优先级的计算D1a: match_shapeD1b. 从符号整数元组构造ShapeShape传播的方法Implications for …

一步一步解读神经网络编译器TVM(一)——一个简单的例子

TOC 前言 这是一个TVM教程系列,计划从TVM的使用说明,再到TVM的内部源码?为大家大致解析一下TVM的基本工作原理。因为TVM的中文资料比较少,也希望贡献一下自己的力量,如有描述方面的错误,请及时指出。 那啥是TVM&am…

P29 JTextArea文本域

P29 JTextArea文本域 1.概述2.代码实例3.效果演示 系统:Win10 Java:1.8.0_333 IDEA:2020.3.4 Gitee:https://gitee.com/lijinjiang01/JavaSwing 1.概述 JTextArea:文本区域。JTextArea 用来编辑多行的文本。JTextArea…

java 刷新jtextarea_Java JTextArea不能实时刷新的问题

相信JTextArea用法都了解吧, JTextArea textArea new JTextArea();生成一块空白的区域, 我的需求就是点击发送邮件按钮后,后台的执行日志能输出到textArea中。 但是我点击发送按钮的时候,由于邮件的附件要好久,界面一…

java 获得jtextarea_java JTextArea中获得光标所在行数

[java]代码库import java.awt.BorderLayout; import java.awt.Rectangle; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.JButton; import javax.swing.JFrame; import javax.swing.JScrollPane; import javax.swing.JTextAre…

java jtextarea 事件_JTextArea事件处理

[java]代码库import java.awt.*; import java.awt.event.*; import javax.swing.*; /*由于会使用到复原和事件驱动功能,因此需要将javax.swing.undo和javax.swing.event两个package包含进来 */ import javax.swing.undo.*; import javax.swing.event.*; /*JTextArea…

JTextArea用法

JTextArea用法 import java.awt.Color; import java.awt.Font; import java.awt.Point; import java.awt.Dimension; import javax.swing.BorderFactory; import javax.swing.JScrollPane; import javax.swing.JTextArea; import javax.swing.JFrame; import javax.swing.Imag…

7、Java Swing JTextArea:文本域组件。 JScrollPane:滚动窗口

文本域与文本框的最大区别就是文本域允许用户输入多行文本信息。在 Swing 中使用 JTextArea 类实现一个文本域, JTextArea常用构造方法如下: JTextArea()----创建一个默认的文本域。JTextArea(int rows,int columns)----创建一个具有指定行数和列数的文…

Swing014——JTextArea:文本域组件

一、API简介 二、实例 package component;import java.awt.BorderLayout; import java.awt.Dimension; import java.awt.event.ActionEvent; import java.awt.event.ActionListener;import javax.swing.JButton; import javax.swing.JFrame; import javax.swing.JPanel; impor…

AUC和ROC

AUC(Area Under Curve)被定义为ROC曲线下的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于yx这条直线的上方,所以AUC的取值范围在0.5和1之间。使用AUC值作为评价标准是因为很多时候ROC曲线并不能清晰的说明哪个分类器…

如何理解西瓜书中AUC和Lrank

首先AUC的定义就是ROC曲线的面积。这是西瓜书上给的定义式子 很容易看出是微积分的思想。 为什么说AUC越大ROC越理想呢?首先思考一下ROC的定义是什么,从定义入手一切都很简单。只不过是概念多了可能会把你给绕糊涂了。ROC曲线是这样画出来的&#xff1a…

模型评估指标AUC

模型评估指标AUC 、 AUC(Area Under Curve)被定义为ROC曲线下与坐标轴围成的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于yx这条直线的上方,所以AUC的取值范围在0.5和1之间。AUC越接近1.0,检测方法真实…

AUC与ROC

ROC曲线 含义 ROC曲线用来衡量阈值对模型的影响,在模型输入不变的情况下改变判断标准而获得不同的结果。是一条描述随着判断阈值变化而得到不同真阳率和假阳率结果的曲线。 例子 为了直观理解,我们做出以下三个假设: 假设1 感冒有三种…