如何通俗易懂地讲解牛顿迭代法?

article/2025/9/15 2:09:17

五次及以上多项式方程没有根式解(就是没有像二次方程那样的万能公式),这个是被伽罗瓦用群论做出的最著名的结论。

但是,没有王屠夫难道非得吃带毛猪?工作生活中还是有诸多求解高次方程的真实需求(比如行星的轨道计算,往往就是涉及到很复杂的高次方程),这日子可怎么过下去啊?

没有根式解不意味着方程解不出来,数学家也提供了很多方法,牛顿迭代法就是其中一种。

1 切线是曲线的线性逼近

要讲牛顿迭代法之前我们先说一个关键问题:切线是曲线的线性逼近。

这个是什么意思呢?我们来看一看,下面是f(x)=x^2 的图像:

我们随便选一点f(x) 上的一点(a,f(a)) 做它的切线:

我们在A点处放大图像:

上图中,红色的线是f(x) ,黑色的是A点处的切线,可以看出放大之后切线和f(x) 非常接近了。很明显,如果我们进一步放大图像,A点切线就越接近f(x) 。

可以自己动手试试:

此处有互动内容,点击此处前往操作。

因为切线是一条直线(也就是线性的),所以我们可以说,A点的切线是f(x) 的线性逼近。离A点距离越近,这种逼近的效果也就越好,也就是说,切线与曲线之间的误差越小。所以我们可以说在A点附近,“切线\approx f(x) ”。

2 牛顿-拉弗森方法的几何直觉

牛顿迭代法又称为牛顿-拉弗森方法,实际上是由牛顿、拉弗森(又是一个被牛顿大名掩盖的家伙)各自独立提出来的。

牛顿-拉弗森方法提出来的思路就是利用切线是曲线的线性逼近这个思想。

牛顿、拉弗森们想啊,切线多简单啊,研究起来多容易啊,既然切线可以近似于曲线,我直接研究切线的根不就成了。

然后他们观察到这么一个事实:

随便找一个曲线上的A点(为什么随便找,根据切线是切点附近的曲线的近似,应该在根点附近找,但是很显然我们现在还不知道根点在哪里),做一个切线,切线的根(就是和x轴的交点)与曲线的根,还有一定的距离。牛顿、拉弗森们想,没关系,我们从这个切线的根出发,做一根垂线,和曲线相交于B点,继续重复刚才的工作:

之前说过,B点比之前A点更接近曲线的根点,牛顿、拉弗森们很兴奋,继续重复刚才的工作:

第四次就已经很接近曲线的根了:

经过多次迭代后会越来越接近曲线的根(下图进行了50次迭代,哪怕经过无数次迭代也只会更接近曲线的根,用数学术语来说就是,迭代收敛了):

3 牛顿-拉弗森方法的代数解法

已知曲线方程f(x) ,我们在x_n 点做切线,求x_{n+1} :

容易得出,x_n 点的切线方程为:f(x_n)+f'(x_n)(x-x_n) 。

要求x_{n+1} ,即相当于求f(x_n)+f'(x_n)(x-x_n)=0 的解,即f(x_n)+f'(x_n)(x_{n+1}-x_n)=0\implies :

x_{n+1}=x_{n}-{\frac {f(x_{n})}{f'(x_{n})}}

4 牛顿-拉弗森方法是否总是收敛(总是可以求得足够近似的根)?

牛顿-拉弗森方法源于直觉,这种直觉本身有一定程度的合理性。

我们来看看收敛的充分条件:

f 二阶可导,那么在待求的零点x 周围存在一个区域,只要起始点x_{0} 位于这个邻近区域内,那么牛顿-拉弗森方法必定收敛。

也就是说,在这个区域内,用切线代替曲线这个直觉是合理的。但是,因为我们不知道根点到底在哪里,所以起始点x_{0} 选择就不一定在这个区域内,那么这个直觉就不可靠了。

4.1 驻点

起始点不幸选择了驻点,从几何上看切线根本没有根。

从代数上看,x_{n+1}=x_{n}-{\frac {f(x_{n})}{f'(x_{n})}} 没有意义。

4.2 越来越远离的不收敛

下面是f(x)=x^{\frac{1}{3}} 的曲线,不论怎么选择起始点,越迭代就越远离根点:

从代数上看,x_{n+1}=x_{n}-{\frac {f(x_{n})}{f'(x_{n})}}=x_n-(x_n^{\frac{1}{3}})/(\frac{1}{3}x^{-\frac{2}{3}})=-2x_n ,就是说下一个点比上一个点更远离根点。

此处根点很显然是0点,而f'(0) 是不存在的。

4.3 循环震荡的不收敛

还有一种更酸爽的不收敛,就是不断的循环震荡。

比如下面是f(x)=|x|^{\frac{1}{2}} 的曲线:

很漂亮的图像吧。从代数上看就是x_{n+1}=-x_n 造成的。

由于选择的起始点不对,造成这种循环的情况其实还挺多,在很多曲线的某些点都会出现这种情况。

此处根点也是0点,而f'(0) 是不存在的。但是不一定f'(0) 不存在就无法用牛顿-拉弗森方法求解,比如f(x)=|x|^{\frac{2}{3}} 依然可以用牛顿-拉弗森方法:

这是因为之前说的收敛判断条件只是充分条件。

4.4 不能完整求出所有的根

比如f(x)=x^4-2x^2+x 这种有多个根的函数,因为选择的起始点,只能求到附近的根:

也可能想求附近的根,由于选择的起始点不对,结果求到远处的根:

4.5 自己动手试试

通过按钮可以切换函数,拖动“起始点”也会有惊喜:

此处有互动内容,点击此处前往操作。

4.6 总结

应用牛顿-拉弗森方法,要注意以下问题:

  • 函数在整个定义域内最好是二阶可导的

  • 起始点对求根计算影响重大,可以增加一些别的判断手段进行试错

5 牛顿-拉弗森方法的应用

比如求平方根:x^2=78 ,可以转为求x^2-78=0 这个方程的根,就可以用牛顿-拉弗森方法求。求平方根用牛顿-拉弗森方法是安全的,没有我之前说的那么多坑。不过我看了有一些工程师写的代码,就有点滥用牛顿-拉弗森方法了,没有从数学角度进行更多的考虑。

数学的魅力就在于,哪怕18世纪就证明了五次及以上多项式方程没有根式解,随着时间的发展,这个证明并不会被推翻,不像技术一样会日新月异。所以牛顿-拉弗森方法仍然在计算机学科中被广泛使用。

文章最新版本在(有可能会有后续更新):如何通俗地理解牛顿迭代法?


http://chatgpt.dhexx.cn/article/btiIOxhv.shtml

相关文章

使用“牛顿迭代法”求解方程

使用牛顿迭代法求解方程 尽管通过因式分解和利用求根公式可以很方便的得出多项式方程的根,但大多数时候这个多项式的次数都很高,计算将变得非常复杂,因此,我们必须转向一些近似解法。 牛顿迭代法是其中最好的方法之一。从根本上说…

牛顿迭代法求解方程

说明:该篇博客源于博主的早些时候的一个csdn博客中的一篇,由于近期使用到了,所以再次作一总结。原文地址 概述 牛顿迭代法(Newton’s method)又称为牛顿-拉夫逊(拉弗森)方法(Newto…

方程求根的迭代法——牛顿迭代法

用牛顿法解方程xe(x) -10 程序流程图如下&#xff1a; //方程求根的迭代法——牛顿迭代法 /*************Analysis********** *1.初值x0,精度e,迭代次数N *2.牛顿法解方程f(x)x*e**x-1 *3.取初值为0.5 ********************************/ #include<iostream> #include&…

牛顿迭代法

转自 LeetCode 解答 一篇解释得很细的文章 牛顿迭代法是一种可以用来快速求解函数零点的方法。 以 LeetCode 上的一题为例&#xff1a;模拟 int sqrt(x) 函数&#xff0c;返回的开方值向下取整。 为了叙述方便&#xff0c;我们用 C 表示待求出平方根的那个整数。显然&#xff…

牛顿迭代法(Newton’s Method)迭代求根的Python程序

迭代法的作用 许多复杂的求解问题&#xff0c;都可以转换成方程f(x)0的求解问题。这一系列的解叫做方程的根。对于非线性方程的求解&#xff0c;在自变量范围内往往有多个解&#xff0c;我们将此变化区域分为多个小的子区间&#xff0c;对每个区间进行分别求解。我们在求解过程…

用牛顿迭代法求方程的根

用牛顿迭代法求方程的根&#xff08;C语言&#xff09; 题目要求&#xff1a;牛顿迭代法是一种重要的基本的求方程根的方法。现有方程为axˆ3bxˆ2cxd0&#xff0c;系数a&#xff0c;b&#xff0c;c&#xff0c;d的值一次为1&#xff0c;2&#xff0c;3&#xff0c;4&#xff…

【源码】牛顿迭代法求根的matlab实现

牛顿迭代法求根的matlab实现 本篇是在课程学习中自己编程实现的牛顿迭代法计算非线性方程或者超越方程近似根的算法&#xff0c;写一下&#xff0c;后边便于复习和期末课程设计引用。 牛顿迭代法本质上是一种特殊的不动点迭代&#xff0c;只不过它的迭代函数的构造比较特殊&am…

牛顿迭代法求方程的根

牛顿迭代法&#xff08;牛顿-拉弗森方法&#xff09; 五次及以上多项式方程没有根式解&#xff08;就是没有像二次方程那样的万能公式&#xff09;&#xff0c;这个是被伽罗瓦用群论做出的最著名的结论。没有根式解不意味着方程解不出来&#xff0c;数学家也提供了很多方法&am…

非线性方程求根——牛顿迭代法

一、牛顿法 1.实质&#xff1a;牛顿法实质上是一种线性方法&#xff0c;其基本思想是将非线性方程f(x)0逐步归结为某种线性方程来解。 2.牛顿法公式&#xff1a; 已知方程f(x)0有近似解xk,假设&#xff0c;将f(x)在点xk泰勒展开&#xff0c;有则方程f(x)0可近似表示为&#…

C语言每日一练——第154天:牛顿迭代法求方程根

&#x1f31f; 前言 Wassup guys&#xff0c;我是Edison &#x1f60e; 今天是C语言每日一练&#xff0c;第154天&#xff01; Let’s get it&#xff01; 文章目录 1. 问题描述2. 题目分析3. 算法设计4. 确定程序框架5. 迭代法求方程根6. 代码实现 1. 问题描述 编写用牛顿迭…

前端骨架屏终极方案——骨架图

骨架图代替骨架屏。用图片代替骨架屏&#xff01;&#xff01;&#xff01; 主要还没尝试过自动生成方案&#xff0c;手工写感觉太麻烦&#xff08;美工已经操起了板砖。。。&#xff09; 最简单的实现方式&#xff0c;拿页面的UI效果图&#xff08;或者直接手机截屏&#xf…

element ui修改骨架屏形状

这是element ui的原本形状 这个形状虽然也可以 但有些情况和东西的加载显然不太适合这个形态 确实我们可以这样写 如果你是vue2 则 <div><el-skeleton animated><template slot"template"><el-skeleton-item style "width: 100vw;he…

你不可能知道的骨架屏玩法!

〇 前言 这篇是作者在公司做了活动架构升级后&#xff0c;产出的主文的前导第二篇&#xff0c;考虑到本文相对独立&#xff0c;因此抽离出单独成文。姐妹兄弟篇&#xff0c;《你可能不知道的动态组件玩法????》。 可能文“对不起”题&#xff0c;知道的大佬别进来了????…

vue加载组件骨架屏el-skeleton使用

做项目遇到的问题&#xff1a;在两个兄弟组件中&#xff0c;点击其中一个组件的一个元素&#xff0c;如button&#xff0c;会触发其兄弟组件的刷新&#xff0c; 我的做法&#xff1a;在watch中监测某字段&#xff0c;更改了之后直接在watch中发送后端请求&#xff0c;如下&…

在vue项目中使用骨架屏

现在的应用开发&#xff0c;基本上都是前后端分离的&#xff0c;前端主流框架有SPA、MPA等&#xff0c;那么解决页面渲染、白屏时间成为首要关注的点 webpack可以按需加载&#xff0c;减小首屏需要加载代码的体积&#xff1b; 使用CDN技术、静态代码等缓存技术&#xff0c;可…

使用 Vite 插件自动化实现骨架屏

大厂技术 高级前端 Node进阶 点击上方 程序员成长指北&#xff0c;关注公众号 回复1&#xff0c;加入高级Node交流群 作者&#xff1a;橙红年代 原文&#xff1a;https://juejin.cn/post/7152406737100734495 骨架屏在SPA应用中有两个显著提升用户体验的作用 避免页面初始化加…

骨架屏技术讲解以及如何在Vue中实现骨架屏

骨架屏技术讲解以及如何在Vue中实现骨架屏 写在前面骨架屏是什么如何实现&#xff08;原理分析&#xff09;一个生动的例子 实现方式&#xff08;具体实现&#xff09;方案一、在模版中来实现骨架屏方案二、使用一个Base64的图片来作为骨架屏方案三、使用 .vue 文件来完成骨架屏…

正确使用uniapp搭配微信开发者工具自带的骨架屏功能,生成骨架屏

重点&#xff1a;把index.skeleton.wxml和index.skeleton.wxss文件中的&#xff08;is““和data-event-opts””&#xff09;的整个属性删掉 一、描述&#xff1a;解决使用uniapp开发微信小程序生成骨架屏 很多人都知道微信开发者工具自带生成骨架屏的功能&#xff0c;但是却不…

vue骨架屏介绍

骨架屏可以理解为是当数据还未加载进来前&#xff0c;页面的一个空白版本&#xff0c;一个简单的关键渲染路径。可以看一下下面Facebook的骨架屏实现&#xff0c;可以看到在页面完全渲染完成之前&#xff0c;用户会看到一个样式简单&#xff0c;描绘了当前页面的大致框架的骨架…

微信小程序:骨架屏的实现方法

骨架屏是为了展示一个页面骨架而不含有实际的页面内容&#xff0c;从渲染效率上来讲&#xff0c;骨架屏它并不能使首屏渲染加快。由于骨架屏的一些使用又向用户渲染了额外的一些内容&#xff0c;这些内容是额外添加的、本来是不需要渲染的&#xff0c;它反而从整体上加长了首屏…