深入浅出讲解神经网络的种类及举例说明

article/2025/10/8 23:29:22
  • 本文收录于《深入浅出讲解自然语言处理》专栏,此专栏聚焦于自然语言处理领域的各大经典算法,将持续更新,欢迎大家订阅!
  • 个人主页:有梦想的程序星空
  • 个人介绍:小编是人工智能领域硕士,全栈工程师,深耕Flask后端开发、数据挖掘、NLP、Android开发、自动化等领域,有较丰富的软件系统、人工智能算法服务的研究和开发经验。
  • 如果文章对你有帮助,欢迎关注点赞收藏订阅。

1.神经网络的分类

神经网络可以分为三种主要类型:前馈神经网络、反馈神经网络和图神经网络。

2.前馈神经网络

前馈神经网络(feedforward neural network)是一种简单的神经网络,也被称为多层感知机(multi-layer perceptron,简称MLP),其中不同的神经元属于不同的层,由输入层-隐藏层-输出层构成,信号从输入层往输出层单向传递,中间无反馈,其目的是为了拟合某个函数,由一个有向无环图表示,如下所示:

图1 前馈神经网络结构图

前馈神经网络中包含激活函数(sigmoid函数、tanh函数等)、损失函数(均方差损失函数、交叉熵损失函数等)、优化算法(BP算法)等。

常用的模型结构有:卷积神经网络、BP神经网络、RBF神经网络、感知器网络等。

下面介绍下经典的卷积神经网络:

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积运算且具有深度结构的前馈神经网络(Feedforward Neural Networks)。

相比早期的BP神经网络,卷积神经网络最重要的特性在于“局部感知”与“参数共享”。

整体架构:输入层——卷积层——池化层——全连接层——输出层

 图2 卷积神经网络结构图

输入层:以图片为例,输入的是一个三维像素矩阵,长和宽表示图像的像素大小,深度表示色彩通道(黑白为1,RGB彩色为3)。

卷积层:卷积层也是一个三维矩阵,它的每个节点(单位节点矩阵)都是上一层的一小块节点(子节点矩阵)加权得来,一小块的尺寸一般取3*3或5*5。此层的作用是对每一小快节点进行深入分析,从而提取图片更高的特征。

池化层:池化层不会改变三维矩阵的深度,其作用是缩小矩阵,从而减少网络的参数。

全连接层:跟全连接神经网络作用一样。

Softmax层:得到当前样例属于不同种类的概率分布,并完成分类。

CNN的整个训练过程如下所示

(1)首先是随机初始化所有滤波器以及其他参数和权重值;

(2)输入图片,进行前向传播,也就是经过卷积层,ReLU和pooling运算,最后到达全连接层进行分类,得到一个分类的结果,也就是输出一个包含每个类预测的概率值的向量;

(3)计算误差,也就是代价函数,这里代价函数可以有多种计算方法,比较常用的有平方和函数:

Error=\frac{1}{2}\sum (y'-y)^{2}

其中,y'为实际值,y为预测值。

(4)使用反向传播来计算网络中对应各个权重的误差的梯度,一般是使用梯度下降法来更新各个滤波器的权重值,目的是为了让输出的误差,也就是代价函数的值尽可能小。

(5)重复上述第二到第四步,直到训练次数达到设定好的值。

卷积神经网络是一种特殊的多层神经网络,像其它的神经网络一样,卷积神经网络也使用一种反向传播算法来进行训练,不同之处在于网络的结构。

卷积神经网络(CNN)具有一些传统技术所没有的优点

(1)良好的容错能力、并行处理能力和自学习能力,可处理环境信息复杂,背景知识不清楚,推理规则不明确情况下的问题;

(2)它允许样本有较大的缺损、畸变,运行速度快,自适应性能好,具有较高的分辨率;

(3)它是通过结构重组和减少权值将特征抽取功能融合进多层感知器,省略识别前复杂的图像特征抽取过程。

3.反馈神经网络

反馈神经网络(feedback neural network)的输出不仅与当前输入以及网络权重有关,还和网络之前的输入有关。它是一个有向循环图或是无向图,具有很强的联想记忆能力和优化计算能力。

常用的模型结构有:RNN、Hopfield网络、玻尔兹曼机、LSTM等。

图3 反馈神经网络结构图

下面介绍下经典的循环神经网络:

循环神经网络(recurrent neural network,简称RNN)源自于1982年由Saratha Sathasivam 提出的霍普菲尔德网络。

循环神经网络,是指在全连接神经网络的基础上增加了前后时序上的关系,可以更好地处理比如机器翻译等的与时序相关的问题。

RNN的目的就是用来处理序列数据的。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题都无能无力。比如你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。

RNN之所以称为循环神经网络,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。

RNN用于解决训练样本输入是连续的序列,且序列的长短不一的问题,比如基于时间序列的问题。基础的神经网络只在层与层之间建立了权连接,RNN最大的不同之处就是在层之间的神经元之间也建立的权连接。

RNN神经网络的结构如下:

 图4 循环神经网络的结构图

循环神经网络的输入是序列数据,每个训练样本是一个时间序列,包含多个相同维度的向量。网络的参数如何通过训练确定?这里就要使用解决循环神经网络训练问题的 Back Propagation Through Time 算法,简称BPTT

循环神经网络的每个训练样本是一个时间序列,同一个训练样本前后时刻的输入值之间有关联,每个样本的序列长度可能不相同。训练时先对这个序列中的每个时刻的输入值进行正向传播,再通过反向传播计算出参数的梯度值并更新参数。

RNN包含四个步骤,简述如下

(1)正向计算每个神经元的输出值;

(2)反向计算每个神经元的误差项 ,它是误差函数对神经元的加权输入的偏导数;

(3)计算每个权重的梯度;

(4)用随机梯度下降算法更新权重。

循环神经网络在进行反向传播时也面临梯度消失或者梯度爆炸问题,这种问题表现在时间轴上。如果输入序列的长度很长,人们很难进行有效的参数更新。通常来说梯度爆炸更容易处理一些。梯度爆炸时我们可以设置一个梯度阈值,当梯度超过这个阈值的时候可以直接截取。

有如下三种方法解决梯度消失的问题:

(1)合理的初始化权重值。初始化权重,使每个神经元尽可能不要取极大或极小值,以躲开梯度消失的区域。

(2) 使用 ReLu 代替 sigmoid 和 tanh 作为激活函数。

(3) 使用其他结构的RNNs,比如长短时记忆网络(LSTM)和 门控循环单元 (GRU),这是最流行的做法。

4.图神经网络

图(graph)是一种在拓扑空间内按图结构组织来关系推理的函数集合,包括社交网络、知识图谱、分子图神经网络等。

图5 图结构示例

近年来,深度学习领域关于图神经网络(Graph Neural Networks,GNN)的研究热情日益高涨,图神经网络已经成为各大深度学习顶会的研究热点。GNN处理非结构化数据时的出色能力使其在网络数据分析、推荐系统、物理建模、自然语言处理和图上的组合优化问题方面都取得了新的突破。

图神经网络通常有以下几种网络模型:图卷积网络、图自编码器、图生成网络、图循环网络、图注意力网络

相关论文A Comprehensive Survey on Graph Neural Networks
论文地址:https://arxiv.org/pdf/1901.00596v1.pdf

GNN是直接在图数据结构上运行的神经网络。GNN的典型应用便是节点分类

图神经网络就是将图数据和神经网络进行结合,在图数据上面进行端对端的计算。

单层的神经网络计算公式:

H=\sigma (XW)

相比较于神经网络最基本的网络结构全连接层(MLP),特征矩阵乘以权重矩阵,图神经网络多了一个邻接矩阵。计算形式很简单,三个矩阵相乘再加上一个非线性变换:

H=\sigma (AXW)

 图6 图神经网络的结构示例

图神经网络的计算过程总结起来就是聚合邻居。图神经网络是直接在图上进行计算,整个计算的过程,沿着图的结构进行,这样处理的好处是能够很好的保留图的结构信息。而能够对结构信息进行学习,正是图神经网络的能力所在。图数据无处不在,图神经网络的应用场景自然非常多样。

 图7 图神经网络的应用场景

关注微信公众号【有梦想的程序星空】,了解软件系统和人工智能算法领域的前沿知识,让我们一起学习、一起进步吧!​​​​​​​


http://chatgpt.dhexx.cn/article/afuaH3Tp.shtml

相关文章

Java网络基础知识

目录 一,计算机网络 1,概念 2,计算机网络的主要功能 3,计算机网络分类 二,网络通信协议及接口 1,网络通信协议 2,网络通信接口 3,通信协议分层思想 4,协议分类 …

神经网络可以用来分类吗,神经网络如何实现分类

怎么用spss神经网络来分类数据 。 用spss神经网络分类数据方法如下:神经网络算法能够通过大量的历史数据,逐步建立和完善输入变量到输出结果之间的发展路径,也就是神经网络,在这个神经网络中,每条神经的建立以及神经…

BP神经网络JAVA实现详解

注:本文手动搬家自我的新浪博客点击打开链接 从2016年3月份左右,我的毕业设计开题答辩时间正好是AlphaGo大战李世石之日。还记得当时答辩PPT最末引用的图片还是这张: 李世石大战Google的AlphaGo 不过当时答辩情况并不理想,答辩组老…

Java网络编程--网络基础

文章目录 网络协议常用网络协议族(簇)(protocol)端口(port)常见知名端口动态端口 IP地址IP地址分类IPv4的分类IPv6子网掩码 网络协议 是为计算机网络中进行数据交换而建立的规则、标准或约定的集合。为了使不同计算机厂家生产的计…

神经网络如何实现分类,神经网络基本概念

人工神经网络分类方法 从20世纪80年代末期,人工神经网络方法开始应用于遥感图像的自动分类。 目前,在遥感图像的自动分类方面,应用和研究比较多的人工神经网络方法主要有以下几种:(1)BP(BackP…

神经网络如何进行分类

1.首先搞清楚什么是感知机 如上图所示,输入为向量,经线性变换,再通过激活函数得到输出,这样一个完整的结构成为感知机。感知机是人工神经网络的最小单元,本质上由一个仿射变换接一个非线性变换组成。 上图wxb属于仿射变…

Java基础学习(17)网络编程

Java基础学习 一、 网络编程1.1 什么是网络编程1.2 常见的软件架构:1.3 网络编程的三要素1.4 IP1.4.1 InetAddress用法 1.5 端口号1.6 协议1.6.1 UDP协议1.6.1.1 UDP的三种通信方式 1.6.2 TCP协议1.6.2.1 TCP底层原理 一、 网络编程 1.1 什么是网络编程 解释&…

java简单的神经网络

运行环境:jre1.7 以下是神经网络的主体类 public class NeuralNetwork {int inputNodes;//输入层节点数int hiddenNodes;//隐藏层节点数int outputNodes;//输出层节点数double learningRate;//学习率double[][] weight_ih;//输入层与隐藏层之间的权重double[][] w…

java实现神经网络算法,java调用神经网络模型

如何用70行Java代码实现神经网络算法 。 如何用70行Java代码实现神经网络算法import.Random;publicclassBpDeep{publicdouble[][]layer;//神经网络各层节点publicdouble[][]layerErr;//神经网络各节点误差publicdouble[][][]layer_weight;//各层节点权重publicdouble[][][]la…

神经网络如何实现分类,神经网络分类特点区别

人工神经网络分类方法 从20世纪80年代末期,人工神经网络方法开始应用于遥感图像的自动分类。 目前,在遥感图像的自动分类方面,应用和研究比较多的人工神经网络方法主要有以下几种:(1)BP(Back …

Java神经网络(一)——Neuroph初次使用

Java神经网络 前言Neuroph框架Neuroph结构框架图Java API 及其类库说明(core nnet util) Neuroph简单案例实现下载必要的Neuroph jar包导入jar包找案例(在书中或者网上)运行解决方案 前言 学了好一阵子时间的神经网络,…

神经网络分类

人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统…

神经网络分类总结

1.人工智能、机器学习与深度学习 人工智能:努力将通常由人类完成的智力任务自动化。机器学习机器学习( machine learning)是人工智能的一个特殊子领域,其目标是仅靠观察训练数据来自动开发程序[即模型( mo…

神经网络分类四种模型,神经网络分类特点区别

神经网络有哪些主要分类规则并如何分类? 神经网络模型的分类人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。 1按照网络拓朴结构分类…

【学习记录】神经网络三种主要类型

1.图结构 图网络是定义在图结构数据上的神经网络:①图中每个节点都由一个或一组神经元组成②节点之间连接可以有向可以无向③每个节点可接收来自相邻节点或自身的信息。 2.前馈神经网络 前馈神经网络中,把每个神经元接受信息的先后分为不同的组&#xf…

神经网络的类型分类和结构理解

一、序言 神经网络是模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。 在深度学习领域,神经网络就是我们深度学习的灵魂,如果我们想依靠算法实现一些功能,就必须依托不同的神经网络结构,所以很有必…

idea构建spark开发环境(基于maven)

目前Intellij IDEA对scala支持的比较好,本文使用idea构建spark开发环境。 1.准备工作 jdk版本,scala sdk环境(我的是jdk1.8,scala 2.1) scala官网下载地址:http://www.scala-lang.org/download/ 2.Intellij IDEA 下载地址ht…

Spark多语言开发

目录 1 多语言开发-说明2 Java-Spark-掌握2.1 SparkCore2.2 SparkStreaming2.3 SparkSQL2.4 StructuredStreaming2.5 线性回归算法-房价预测案例2.5.1 需求代码实现 3 PySpark-了解3.1 SparkCore3.2 SparkStreaming3.3 SparkSQL3.4 StructuredStreaming3.5 决策树算法-相亲决策…

eclipse配置spark开发环境

前言 无论Windows 或Linux 操作系统,构建Spark 开发环境的思路一致,基于Eclipse 或Idea,通过Java、Scala 或Python 语言进行开发。安装之前需要提前准备好JDK、Scala 或Python 环境,然后在Eclipse 中下载安装Scala 或Python 插件(…

idea搭建spark开发环境完整版(windows)

利用intellij idea 搭建spark开发环境(windows) 本文配置所有环境 Win10 企业版2016长期服务版 Jdk1.8.0.131 Hadoop2.7.3 Spark2.2.0 Scala2.11.12 一、Jdk环境配置 下载 http://www.oracle.com/technetwork/cn/java/javase/downloads/jdk8-downloads-…