ROC-AUC 浅谈理解ROC曲线和AUC值

article/2025/5/22 12:27:07

这是一个评价二分类器的指标,特点是不受不平衡数据集的影响。但事实理解起来有点难。下面先介绍ROC-AOC是什么,然后再谈谈我的一种理解。ps,理解这个指标,首先得对经典的F1, Recall,Precision的比较熟悉,否则看了会一头雾水,如果你不熟这几个指标的计算,建议先阅读。

1. ROC曲线

receiver operating characteristic curve(名称似乎无法直观理解它本身,所以忽略),它是一条关于TPR和FPR的曲线,其中TPR,true positive rate,标签为正的样本,被预测为正的比率。FPR,false positive rate,标签为负,预测为正的比率。

正确预测为正的 / 全体标签为正的数量。


http://chatgpt.dhexx.cn/article/VNWPDcY5.shtml

相关文章

ROC曲线和AUC值的计算

转载自:https://zhuanlan.zhihu.com/p/25212301,本文只做个人记录学习使用,版权归原作者所有。 1、混淆矩阵 混淆矩阵如下图所示,分别用0和1代表负样本和正样本。FP代表实际类标签为0但是预测标签为1的样本数量,其余…

机器学习 模型评估指标 - ROC曲线和AUC值

机器学习算法-随机森林初探(1)随机森林拖了这么久,终于到实战了。先分享很多套用于机器学习的多种癌症表达数据集 https://file.biolab.si/biolab/supp/bi-cancer/projections/。机器学习算法-随机森林之理论概述 分类问题评估指标有&#xf…

[sklearn]性能度量之AUC值

[sklearn]性能度量之AUC值 (from sklearn.metrics import roc_auc_curve) 1.AUC AUC(Area Under ROC Curve),即ROC曲线下面积。 2.AUC意义 若学习器A的ROC曲线被学习器B的ROC曲线包围,则学习器B的性能优…

如何理解ROC曲线和AUC值

1、ROC曲线下的面积就是AUC值。 2、如何绘制ROC曲线,通过改变不同的阈值,每个阈值都可以得到一个混淆矩阵,通过混淆矩阵,可以计算出假阳性率和真阳性率。即该坐标系下的一个点。将阈值从0,调整到1,即可绘制…

AUC值越大_AUC的一般计算和近似计算方式

AUC值是一个概率值,当你随机挑选一个正样本以及负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值,AUC值越大,当前分类算法越有可能将正样本排在负样本前面,从而能够更好地分类。…

AUC值越大_模型评价——准确率、精确率与召回率与F值、宏平均与微平均、ROC曲线与AUC值...

在上一篇文章中(baiziyu:模型评价——训练误差与测试误差、过拟合与欠拟合、混淆矩阵)主要介绍了模型评价涉及的基本概念,本节给出一些常用的评价指标。这些指标大致可以分为三类,第一大类是普通的准确率评价指标&…

AUC值越大_「机器学习速成」分类,评估指标(TP、FP、TN、FN),ROC曲线和AUC

大家好,今天我们学习【机器学习速成】之 分类,评估指标(TP、FP、TN、FN),ROC曲线和AUC。 本节介绍了如何使用逻辑回归来执行分类任务, 并探讨了如何评估分类模型的有效性。 我们 马上学三点 , 逻辑回归用作分类&#x…

AUC值越大_一文看懂ROC、AUC

评测指标是衡量一个算法是否出色的一个重要部分,好的指标能让我们这些炼丹学徒知道,练出来的丹药是否有效果。那么在机器学习中有哪些值得一探究竟的指标呢?本文就PR图,ROC、AUC、mAP这4个方面进行详细探究。 总的来说评价指标的核心得从二分类问题说起:一个类,它实际值有…

入门选手都能理解的ROC曲线与AUC值

项目github地址:bitcarmanlee easy-algorithm-interview-and-practice 欢迎大家star,留言,一起学习进步 1.ROC曲线 在信号检测理论中,接收者操作特征曲线(receiver operating characteristic curve,或者叫…

AUC值得含义和计算方法

转载自:http://baijiahao.baidu.com/s?id1597939133517926460&wfrspider&forpc 机器学习备忘录 | AUC值的含义与计算方法 浮生偷闲 18-04-17 05:32 内容导读 在机器学习领域, AUC 值经常用来评价一个二分类模型的训练效果,对于许多机…

python计算偏态、极差、方差、标准差、平均数、中位数、众数

import numpy as np lists[1,2,3,4,5,6,7,8,9]print("极差:",np.max(lists)-np.min(lists))#最大值减最小值 lists_varnp.var(lists, axisNone, dtypeNone, outNone, ddof0, keepdimsnp._NoValue) print("方差:",lists_var) lists_s…

数据分析应用统计学之分散性与变异性的测量【极差、四分位差、偏态系数、峰态系数、统计指标】

文章目录 1、极差与四分位差(R)2、方差与标准差(西格玛、V)3、偏态系数与峰态系数(SK、β)4、统计指标类型 1、极差与四分位差(R) 1)极差:称为全距&#xff…

偏态数据的观察、量化评估与处理前后的对比

在机器学习中,模型更容易从具有正态分布特性的数据中学习到有用特征。但我们经常会发现有些特征存在长尾分布,对于这种偏态分布数据,需要进行特殊的处理,本文首先观察特征分布情况,然后以量化的方式评估数据偏态程度从…

统计学学习日记:L7-离散趋势分析之偏态和峰态

一、偏态&#xff08;SK&#xff09; 1.数据偏斜程度的测度 偏态系数0为对称分布 偏态系数>0为右偏分布 偏态系数<0为左偏分布 偏态系数>1或<-1&#xff0c;被称为高度偏态分布&#xff1b;偏态系数在0.5~1或-1~-0.5之间&#xff0c;被认为是中等偏态分布&#xf…

如何处理偏态数据?

这是笔试/面试题系列的第2篇文章 在了解何为偏态数据前&#xff0c;要先从正态数据说起。 正态分布 正态分布是自然界中广泛存在的&#xff0c;我们都知道它是两头低&#xff0c;中间高&#xff0c;整个形态呈现对称钟形的一个分布&#xff0c;之所以叫正态分布&#xff0c;是…

skewness and kurtosis偏态和峰度的解释和演示、数据的偏度和峰度——df.skew()、df.kurt()

skewness (偏态) 正偏态分布(positive skewness distribution)是指频数分布的高峰偏于左侧&#xff0c;偏态系数为正值的频数分布形态。偏态分布分为正偏态和负偏态。当均值大于众数时称为正偏态&#xff1b;当均值小于众数时称为负偏态。 定义上偏度是样本的三阶标准化矩&am…

Uniapp中onShow()的应用

遇到问题&#xff1a; 在使用一些变量进行判断时&#xff0c;用完一次开始下一次判断时&#xff0c;结果会跟前一次一样&#xff0c;比如门禁中第一个房子打开后&#xff0c;切换到另外的房子&#xff0c;结果返回结果跟第一个房子一样。 原因分析&#xff1a; 用于使用了相…

uni中onLoad与onShow周期的区别

一、说明 页面周期参考网址&#xff1a;https://uniapp.dcloud.io/tutorial/page.html#lifecycle 二、通俗概括 1. onLoad先执行&#xff0c;onShow后执行 onLoad() {console.log(111); }, onShow(){console.log(222); },2. onLoad只执行一次&#xff0c;onShow监听页面可执…

uni-app小程序onShow执行两次;微信小程序onShow重复执行原因;导航栏tabBar页的onLoad函数不执行;App.vue页的onShow执行原因;onShow莫名其妙执行

1.只有五种情况会触发导航栏tabBar页的onLoad函数&#xff0c;分别是&#xff1a; –1.1&#xff1a;首次进入到导航栏tabBar页面&#xff1b; –1.2&#xff1a;从微信分享进入的导航栏tabBar页面&#xff1b; –1.3&#xff1a;识别二维码跳转到小程序的导航栏tabBar页面&…