AUC值越大_一文看懂ROC、AUC

article/2025/5/1 7:57:17

评测指标是衡量一个算法是否出色的一个重要部分,好的指标能让我们这些炼丹学徒知道,练出来的丹药是否有效果。那么在机器学习中有哪些值得一探究竟的指标呢?本文就PR图,ROC、AUC、mAP这4个方面进行详细探究。

总的来说评价指标的核心得从二分类问题说起:一个类,它实际值有0、1两种取值,即负例、正例;而二分类算法预测出来的结果,也只有0、1两种取值,即负例、正例。我们不考虑二分类算法细节,当作黑箱子就好;我们关心的是,预测的结果和实际情况匹配、偏差的情况。

从TP、FP、TN、FN讲起。那么说起这些指标,则又要需要说混淆矩阵了。

混淆矩阵

混淆矩阵是机器学习中总结分类模型预测结果的情形分析表,以矩阵形式将数据集中的记录按照真实的类别与分类模型作出的分类判断两个标准进行汇总。这个名字来源于它可以非常容易的表明多个类别是否有混淆(正类预测成负类)。

f571a59f37ba2979019495e082067f0b.png
混淆矩阵

这里,我们认为 1 为正类, 0为负类,那么我们可以得出这样的指标:

46c06e48bca045647536ff6445152512.png
正类负类的差别

P (Positive) 和 N(Negative) 代表模型的判断结果

T (True) 和 F(False) 评价模型的判断结果是否正确

FP: 假正例,模型的判断是正例 (P) ,实际上这是错误的(F),连起来就是假正例

FN:假负例,模型的判断是负例(N),实际上这是错误的(F),连起来就是假正例<


http://chatgpt.dhexx.cn/article/OlmTYOaG.shtml

相关文章

入门选手都能理解的ROC曲线与AUC值

项目github地址&#xff1a;bitcarmanlee easy-algorithm-interview-and-practice 欢迎大家star&#xff0c;留言&#xff0c;一起学习进步 1.ROC曲线 在信号检测理论中&#xff0c;接收者操作特征曲线&#xff08;receiver operating characteristic curve&#xff0c;或者叫…

AUC值得含义和计算方法

转载自&#xff1a;http://baijiahao.baidu.com/s?id1597939133517926460&wfrspider&forpc 机器学习备忘录 | AUC值的含义与计算方法 浮生偷闲 18-04-17 05:32 内容导读 在机器学习领域&#xff0c; AUC 值经常用来评价一个二分类模型的训练效果&#xff0c;对于许多机…

python计算偏态、极差、方差、标准差、平均数、中位数、众数

import numpy as np lists[1,2,3,4,5,6,7,8,9]print("极差&#xff1a;",np.max(lists)-np.min(lists))#最大值减最小值 lists_varnp.var(lists, axisNone, dtypeNone, outNone, ddof0, keepdimsnp._NoValue) print("方差&#xff1a;",lists_var) lists_s…

数据分析应用统计学之分散性与变异性的测量【极差、四分位差、偏态系数、峰态系数、统计指标】

文章目录 1、极差与四分位差&#xff08;R&#xff09;2、方差与标准差&#xff08;西格玛、V&#xff09;3、偏态系数与峰态系数&#xff08;SK、β&#xff09;4、统计指标类型 1、极差与四分位差&#xff08;R&#xff09; 1&#xff09;极差&#xff1a;称为全距&#xff…

偏态数据的观察、量化评估与处理前后的对比

在机器学习中&#xff0c;模型更容易从具有正态分布特性的数据中学习到有用特征。但我们经常会发现有些特征存在长尾分布&#xff0c;对于这种偏态分布数据&#xff0c;需要进行特殊的处理&#xff0c;本文首先观察特征分布情况&#xff0c;然后以量化的方式评估数据偏态程度从…

统计学学习日记:L7-离散趋势分析之偏态和峰态

一、偏态&#xff08;SK&#xff09; 1.数据偏斜程度的测度 偏态系数0为对称分布 偏态系数>0为右偏分布 偏态系数<0为左偏分布 偏态系数>1或<-1&#xff0c;被称为高度偏态分布&#xff1b;偏态系数在0.5~1或-1~-0.5之间&#xff0c;被认为是中等偏态分布&#xf…

如何处理偏态数据?

这是笔试/面试题系列的第2篇文章 在了解何为偏态数据前&#xff0c;要先从正态数据说起。 正态分布 正态分布是自然界中广泛存在的&#xff0c;我们都知道它是两头低&#xff0c;中间高&#xff0c;整个形态呈现对称钟形的一个分布&#xff0c;之所以叫正态分布&#xff0c;是…

skewness and kurtosis偏态和峰度的解释和演示、数据的偏度和峰度——df.skew()、df.kurt()

skewness (偏态) 正偏态分布(positive skewness distribution)是指频数分布的高峰偏于左侧&#xff0c;偏态系数为正值的频数分布形态。偏态分布分为正偏态和负偏态。当均值大于众数时称为正偏态&#xff1b;当均值小于众数时称为负偏态。 定义上偏度是样本的三阶标准化矩&am…

Uniapp中onShow()的应用

遇到问题&#xff1a; 在使用一些变量进行判断时&#xff0c;用完一次开始下一次判断时&#xff0c;结果会跟前一次一样&#xff0c;比如门禁中第一个房子打开后&#xff0c;切换到另外的房子&#xff0c;结果返回结果跟第一个房子一样。 原因分析&#xff1a; 用于使用了相…

uni中onLoad与onShow周期的区别

一、说明 页面周期参考网址&#xff1a;https://uniapp.dcloud.io/tutorial/page.html#lifecycle 二、通俗概括 1. onLoad先执行&#xff0c;onShow后执行 onLoad() {console.log(111); }, onShow(){console.log(222); },2. onLoad只执行一次&#xff0c;onShow监听页面可执…

uni-app小程序onShow执行两次;微信小程序onShow重复执行原因;导航栏tabBar页的onLoad函数不执行;App.vue页的onShow执行原因;onShow莫名其妙执行

1.只有五种情况会触发导航栏tabBar页的onLoad函数&#xff0c;分别是&#xff1a; –1.1&#xff1a;首次进入到导航栏tabBar页面&#xff1b; –1.2&#xff1a;从微信分享进入的导航栏tabBar页面&#xff1b; –1.3&#xff1a;识别二维码跳转到小程序的导航栏tabBar页面&…

自定义组件中,使用onLoad,onShow生命周期失效问题

的解决方法 自定义组件中&#xff0c;使用onLoad,onShow生命周期失效问题 自定义组件中&#xff0c;使用onLoad,onShow生命周期失效问题 官方文档可查阅到&#xff1a; 页面生命周期仅在page中的vue页面有效&#xff0c;而单独封装的组件中【页面周期无效】&#xff0c;但是Vu…

微信小程序onTabItemTap和onShow的执行顺序

很显然 onShow的执行顺序要比 onTabItemTap早 onTabItemTap的特性是只在当前tabbar页面生效&#xff0c;比如onTabItemTap写在home页面&#xff0c;那么只有点击了tabbar上的home才会执行。 那是否有办法让onTabItemTap早于onShow先执行那&#xff1f;经过测试找到2种办法 方…

页面生命周期onShow没有触发

现象描述&#xff1a; 通过router.push接口跳转到快应用的B页面&#xff0c;当B页面只是引用一个自定义组件XX的时候&#xff0c;B页面的onShow生命周期无法触发。如下图所示&#xff1a; 代码如下&#xff1a; B页面代码&#xff1a; 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …

ER图和EER图的区别

ER图 ER图&#xff0c;是一种逻辑模型&#xff0c;与具体落地的数据库无关&#xff0c;长这样的 EER图 是一种物理模型&#xff0c;与落地的数据库&#xff08;Mysql&#xff09;相关&#xff0c;长这样的 总结 一般做数据设计的时候会经过一下这几个流程 0.规划 1.需求分析…

数据库关系建模(ER图设计关系表)

目录 一、概述 二、基本概念 1. 关系(relation) 2. 列(column) 3. 行(row) 4. 关系表 VS 一般的表 5. 主码(主键primary key) 6. 实体完整性约束(entity integrity constraint) 7. 外码(外键foreign key) 8. 参照完整性约束(reference integrity constraints) 三、ER模型…

ER图如何画?如何根据ER图转换成表结构?示例:图书管理系统ER图

一、ER图如何画&#xff1f; 很多同学不会画ER图&#xff0c;我就以图书管理系统为例画一张ER图和ER图如何转成数据库&#xff0c;科普一下。ER图是实体、属性、关系组成的图&#xff0c;主要用于数据库概念设计的时候&#xff0c;通过业务分析画出来的图&#xff0c;最终每一个…

ER图,以及转化成关系模式

软考复习get一个知识点 .找出条件中的实体(矩形),属性(椭圆),关系(菱形)关系分为1:1,1:N,M:N,列出ER图 2. -1:1联系的转换方法 -两个实体分别转化为一个关系模式,属性即是本来的属性 -关系可以与任意一个实体合并,关系的属性,以及另一个实体的主码…

ER图(把ER模型转换为关系模式、关系范式概念)

关于ER模型的转换&#xff0c;我们只需要记住三个转换准则&#xff1a; 1:1、1:N、M:N 二元联系&#xff1a; &#xff08;1&#xff09;一对一关系(One to One) 映射规则一&#xff1a;当转换为关系模型时&#xff0c;在两个实体任选一个添加另一个实体的主键即可。 例子&am…