基于Gabor滤波器的人脸特征提取

article/2025/9/16 15:45:33

       Gabor小波变换的核函数,其最大的特点是其与人脑的皮层神经细胞的二维反射区具有相似的特征。基于Gabor小波变换的特征信息能够有效提取各种细节结构信息,因此Gabor小波变换在图像识别领域有着较为广泛的应用。根据Gabor小波变换的特点,基于Gabor小波变换的Gabor滤波器可以同时在图像的空间域和频域获得最优的局部特征信息。

      通常情况下,Gabor滤波器提取图像特征,可以有效表征图像的纹理特征信息,特别在人脸图像识别领域,Gabor滤波器所反应的频率信息和方向信息和人类的视觉系统较为接近。因此,Gabor滤波器可以有效反应人脸的特征信息。Gabor滤波器通过小波的膨胀处理和旋转处理计算得到,因此,Gabor滤波器具有较强的自相似性。在人脸图像特征信息上,通过Gabor滤波器处理之后,在人脸图像的空间域上,其特征信息通过高斯核函数和正弦平面波相乘得到。人脸图像的频域上,其特征信息反应在不同方向和不同尺度上的多向性特征。Gabor滤波器恰好能够克服光影干扰、姿态角度等因素的影响,应用Gabor滤波器处理人脸图像就可以省去图像矫正这步骤。

      但是,Gabor滤波器也有一定的缺点,Gabor特征维数过高以及数据存在的冗余性。为了计算有效的人脸特征,我们需要构造多尺度、多方向的Gabor滤波器,这会使原有的图像尺寸成倍的增加,给接下来的特征匹配工作带来困难。所以我们需要对Gabor特征降维,并且要克服它的冗余性。

一个二维的Gabor滤波器在时域上可以表示为高斯核函数和正弦平面波相乘得到,因此二维Gabor滤波器的数学公式可以表示为:

这40个Gabor滤波器,对应5个尺度的频率分量如图2.10所示,在5个尺度和8个方向的实部特征,如图所示。

 

图1 Gabor滤波器在5个尺度的频率分量

 

图2 Gabor滤波器在5个尺度和8个方向的分量

我们用图3中的原始人脸图像尺寸举例,其原有尺寸为,但是经过Gabor滤波器后,图像尺寸增加到。如果在一个样本库中有400幅人脸图像,将会需要较大的存储空间去存储数据,而且计算速度也会随之变慢。

 


http://chatgpt.dhexx.cn/article/VIZe2JnB.shtml

相关文章

Gabor特征提取

Gabor小波与人类视觉系统中简单细胞的视觉刺激响应非常相似。它在提取目标的局部空间和频率域信息方面具有良好的特性。虽然Gabor小波本身并不能构成正交基,但在特定参数下可构成紧框架。Gabor小波对于图像的边缘敏感,能够提供良好的方向选择和尺度选择特…

Gabor 卷积神经网络

与不涉及学习过程的 hand-crafted 滤波器不同,DCNNs-based feature extraction 是一种 data-driven 技术,可以直接从数据中学习具有鲁棒性的特征表示。然而,它有非常大的训练成本和复杂的模型参数。 DCNNs 有限的几何变换建模能力主要来自于…

如何理解Gabor滤波器

转载自如何理解Gabor滤波器 介绍 我们已经知道,傅里叶变换是一种信号处理中的有力工具,可以帮助我们将图像从空域转换到频域,并提取到空域上不易提取的特征。但是经过傅里叶变换后,图像在不同位置的频度特征往往混合在一起&…

基于python的图像Gabor变换及特征提取

基于python的图像Gabor变换及特征提取 1.前言2. “Gabor帮主”简介3.“Gabor帮主”大招之图像变换3.“Gabor帮主”大招之图像特征提取 深圳中兴网信科技有限公司:廖海斌 1.前言 在深度学习出来之前,图像识别领域北有“Gabor帮主”,南有“SIF…

Gabor滤波器详解

转载自如何理解Gabor滤波器 介绍 我们已经知道,傅里叶变换是一种信号处理中的有力工具,可以帮助我们将图像从空域转换到频域,并提取到空域上不易提取的特征。但是经过傅里叶变换后,图像在不同位置的频度特征往往混合在一起&…

Gabor 变换

http://blog.sina.com.cn/s/blog_48a242d601000a3j.html Gabor变换属于加窗傅立叶变换,Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。另外Gabor函数与人眼的生物作用相仿,所以经常用作纹理识别上,并取得了较好的效果。 Gabor变换…

图像处理:Gabor滤波器简介以及python实现

在图像处理中,以Dennis Gabor命名的Gabor滤波器是一种用于纹理分析的线性滤波器,本质上是指在分析点或分析区域周围的局部区域内,分析图像中是否存在特定方向的特定频率内容。Gabor滤波器的频率和方向表示被许多当代视觉科学家认为与人类视觉…

Gabor滤波器学习

本文的目的是用C实现生成Gabor模版,并对图像卷积。并简单提一下,Gabor滤波器在纹理特征提取上的应用。 一、什么是Gabor函数(以下内容含部分翻译自维基百科) 在图像处理中,Gabor函数是一个用于边缘提取的线性滤波器。…

Gabor变换

2009-12-13 00:51:08| 分类: 图像处理|字号 订阅 转自 http://blog.sina.com.cn/s/blog_48a242d601000a3j.html~typev5_one&labelrela_prevarticle Gabor变换属于加窗傅立叶变换,Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。另外Gabo…

Gabor滤波器

Gabor是一个用于边缘提取的线性滤波器,其频率和方向表达与人类视觉系统类似,能够提供良好的方向选择和尺度选择特性,而且对光照变换不敏感,因此十分适合纹理分析。 一、Gabor滤波器 在图像处理中,Gabor函数是一个用于…

Gabor 特征

一.Gabor 特征的简介 Gabor 特征是一种可以用来描述图像纹理信息的特征,Gabor 滤波器的频率和方向与人类的视觉系统类似,特别适合于纹理表示与判别。Gabor 特征主要依靠 Gabor 核在频率域上对信号进行加窗,从而能描述信号的局部频率信息。 …

Gabor滤波器特征提取原理讲解及c++实现

文章目录 Gabor滤波器复正弦载波高斯滤波 参数解释gabor滤波核实现效果: Gabor滤波器 1946年,Dennis Gabor于在“Theory of communication”一文中提出了著名的“窗口”傅里叶变换(也叫短时Fourier变换,STFT),即Gabor…

FCN学习

简介 FCN(Fully Convolutional Networks for Semantic Segmentation)是首个端对端的针对像素级别预测的全卷积网络,发表在2015CVPR。全卷积的意思是全连接层全部替换成了卷积层。 上面这句话的重点是全卷积,但是端到端end to end这个词也同样重要。end…

卷积神经网络CNN(3)—— FCN(Fully Convolutional Networks)要点解释

前言 参考FCN论文:Fully Convolutional Networks for Semantic Segmentation FCN作为图像语义分割的先河,实现像素级别的分类(即end to end,pixel-wise),为后续使用CNN作为基础的图像语义分割模型提供重要…

语义分割——FCN模型pytorch实现

FCN网络简介 全卷积网络(Fully Convolutional Networks,FCN)是Jonathan Long等人于2015年在Fully Convolutional Networks for Semantic Segmentation一文中提出的用于图像语义分割的一种框架,是首个端对端的针对像素级预测的全卷…

全卷积网络 FCN 详解

原文链接:全卷积网络 FCN 详解 FCN是深度学习应用在图像分割的代表作, 是一种端到端(end to end)的图像分割方法, 让网络做像素级别的预测直接得出label map, 下面我们来看看FCN是如何做到像素级别的分类的 论文 : Fully Convolutional Networks for Semantic Segme…

图像分割-FCN全卷积神经网络(完整代码详解)

目录 FCN全卷积神经网络 实现过程 全卷积 反卷积 FCN的三点创新 code FCN全卷积神经网络 FCN为深度学习在语义分割领域的开山之作,提出使用卷积层代替CNN中的全连接操作,生成热力图heat map而不是类别。 实现过程 图1 FCN网络结构 包括全卷积过程…

FCN网络学习笔记

目录 前言1. 网络结构2. 损失计算:Cross Entropy Loss参考 前言 FCN网络是首个端对端的针对像素级预测的全卷积网络。 其中,全卷积的含义是将分类网络的全连接层全部替换成了卷积层。使用了分类网络作为backbone,将会复用分类网路在ImageNet…

深度学习-全卷积神经网络(FCN)

1. 简介 全卷积神经网络(Fully Convolutional Networks,FCN)是Jonathan Long等人于2015年在Fully Convolutional Networks for Semantic Segmentation一文中提出的用于图像语义分割的一种框架,是深度学习用于语义分割领域的开山之…

FCN全卷积网络理解及代码实现(来自pytorch官方实现)

视频链接:https://www.bilibili.com/video/BV1J3411C7zd?vd_sourcea0d4f7000e77468aec70dc618794d26f 代码:https://github.com/WZMIAOMIAO/deep-learning-for-image-processing FCN是2015年提出的首个端对端的针对像素级预测的全卷积网络。 如今的pyt…