FCN全卷积网络理解及代码实现(来自pytorch官方实现)

article/2025/9/16 15:17:26

视频链接:https://www.bilibili.com/video/BV1J3411C7zd?vd_source=a0d4f7000e77468aec70dc618794d26f
代码:https://github.com/WZMIAOMIAO/deep-learning-for-image-processing

FCN是2015年提出的首个端对端的针对像素级预测的全卷积网络。
如今的pytorch实现的FCN都是基于ResNet-50的backbone,不是论文中的VGG16,且使用的是空洞卷积(也叫膨胀卷积)

pytorch官方实现的FCN网络结构图

在这里插入图片描述
博主github:https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_segmentation/fcn

一、相比以前网络的巨大提升:

在这里插入图片描述

二、传统使用池化层最后得到的其实是一个长度为1000的向量:

在这里插入图片描述
而换为卷积层之后,最后得到的是1000通道的2D图像,可以可视化为heat map图。

三、回顾VGG16

一般说的vgg16是D
在这里插入图片描述
全连接操作前后:77512(通道)
在这里插入图片描述

【 假 设 忽 略 偏 置 】 \color{red}{【假设忽略偏置】}
全连接FC1计算:计算对应某一个结点的输出,将该节点与上一层某一个结点的权重与输入对应节点数值相乘,再求和

  • FC1参数:25088*4096=102760448

下层使用7*7的卷积核、stride=1,4096个卷积核的一个卷积层

  • Conv参数:77512*4096=102760448

一 个 卷 积 核 和 F C 1 一 个 节 点 参 数 量 一 样 \color{red}{一个卷积核和FC1一个节点参数量一样} FC1,一共4096个卷积核,FC也是4096个节点。

【 不 忽 略 偏 置 的 正 常 卷 积 操 作 , 4096 个 卷 积 核 应 该 有 4096 个 偏 置 项 】 \color{red}{【不忽略偏置的正常卷积操作,4096个卷积核应该有4096个偏置项】} 40964096
在这里插入图片描述

PS:全连接层

全连接层的输入是一维数组,多维数组需先进行Flatten进行一维化处理,然后连接全连接层。全连接层的每一个结点都与上一层的所有结点相连,用来把前边提取到的特征综合起来。由于其全相连的特性,一般全连接层的参数也是最多的。全连接图结构如下:
在这里插入图片描述
其中,x1、x2、x3为全连接层的输入,a1、a2、a3为输出,有
在这里插入图片描述

全连接层参数计算

权值参数=输入一维数组大小*全连接层输出结点数
偏置参数b=全连接层输出结点数

eg:
输入有[5044]个神经元结点,输出有500个结点,则一共需要5044*500=400000个权值参数W和500个偏置参数b

卷积和全连接层

卷积跟全连接都是一个点乘的操作,区别在于卷积是作用在一个局部的区域,而全连接是对于整个输入而言,那么只要把卷积作用的区域扩大为整个输入,那就变成全连接了,我就不给出形式化定义了。所以我们只需要把卷积核变成跟输入的一个map的大小一样就可以了,这样的话就相当于使得卷积跟全连接层的参数一样多。
eg:输入是224x224x3 的图像,假设经过变换之后最后一层是[7x7x512]的,那么传统的方法应该将其展平成为一个7x7x512长度的一层,然后做全连接层,假设全连接层为4096×1000层的(假设有1000个分类结果)。 那么用1×1卷积核怎么做呢,因为1×1卷积核相当于在不同channel之间做线性变换,所以:

先选择7×7的卷积核,输出层特征层数为4096层,这样得到一个[1×1×4096]层的
然后再选择用1×1卷积核,输出层数为1000层,这样得到一个[1×1×1000]层这样就搞定了。

四、FCN-32s、16s、8s的区别

在这里插入图片描述
上采样倍率为32的模型对应的就是FCN-32s,16s、8s同理。

FCN-32s

FCN原论文中backbone的第一个卷积层padding=100,为了防止图片过小(例如192192)后面的卷积层会报错。
如果图片小于32
32的话在卷积过程就会报错。
但是没必要设置,只要输入图片大小大于32*32,我们就可以将padding设置为3。
在这里插入图片描述
对于FCN-32s

  • vgg16 backbone输出的特征图大小就为h/32,w/32,512。高度宽度变为原图的1/32。

  • 之后经过FC6层:由于我们将FC6卷积层的padding设置为3、卷积核大小7*7,通过FC6之后将不会改变特征图的高和宽;且我们使用了4096个卷积核,所以这里就得到了4096个2D特征图。

  • 经过FC7:使用了1*1大小的卷积核,步距也为1,所以输出特征图shape也不会发生变化。

  • 之后经过卷积核大小为1*1的卷积层:它的卷积核的个数和我们的分类类别数一样(包含背景,对于voc为20类+1背景),将特征图通道数变为num_cls。

  • 之后通过一个转置卷积:这里的s32我们会将特征图上采样32倍【原论文中使用的是双线性插值】,得到特征图大小变为h,w,num_cls。

之后特征图经过一个softmax处理就能得到针对每一个pixel的预测类别。
前面的backbone使用的是vgg16的预训练权重,整个结构十分简单,但是效果还是非常不错的。
在这里插入图片描述
其实这里的转置卷积在原论文中其实是将参数给冻结住了,冻结住意味着其实它就是一个简单的双线性卷积了。

  • 所以这里其实可以不使用转置卷积,可以直接使用深度学习框架提供给我们的双线性插值方法。

  • 为什么会冻结呢?作者说冻结不冻结作者觉得结果好像没有什么差别,而且冻结参数会少一些。up主觉得冻结不冻节效果一般的原因是这里的上采样倍率太大了,有点强人所难的感觉。有兴趣的可以看一下u-net中的上采样率是多少。

FCN-16s

在这里插入图片描述

FC6、FC7、Conv2d核32s的一样。
不同点:

  • 转置卷积上采样率变为了2倍,之后高和宽变为1/16
  • 下面分支经过maxpool4之后变也为1/16,通道数为512;后接上了一个1*1卷积、卷积核数量为num_cls、步长为1,得到特征图大小1/16、通道数变为num_cls
  • 之后进行一个相加操作,转置卷积上采样16倍就得到了原图大小h,w,num_cls

【 F C N − 16 s 中 融 合 了 来 自 m a x p o o l 4 的 信 息 】 \color{red}{【FCN-16s中融合了来自maxpool4的信息】} FCN16smaxpool4

须知:vgg16经过mxpool3之后特征图大小下采样率为8,经过maxpool4后下采样率为16。
在这里插入图片描述

FCN-8s

在这里插入图片描述

不同点:

  • 8s还利用了来自于mxpool3的信息,经过16s类似的1*1卷积层后得到一个1/8,通道数为num_cls的特征图;
  • FCN-16s上两层后得到的1/16特征图,经过一个转置卷积上采样,采样率为2倍就能得到一个和maxpool3输出尺寸一样的1/8的特征图
  • 一块进行一个相同位置元素的相加操作【进一步的融合】,最后进行一个上采样倍率为8的转置卷积就能得到一个和原图大小一样的特征图大小h,w,num_cls。

【 由 此 可 见 , F C N − 16 s 和 F C N − 8 s 融 合 了 一 个 底 层 的 信 息 ; 而 F C N 32 s 是 最 简 单 的 , 它 没 有 融 合 底 层 信 息 】 \color{red}{【由此可见,FCN-16s和FCN-8s融合了一个底层的信息;而FCN32s是最简单的,它没有融合底层信息】} FCN16sFCN8sFCN32s在网上看到最多的是FCN-32的实现。

五、损失计算

在这里插入图片描述
针对每一个pixel都会去计算它所对应的一个Cross Entropy Loss,然后将所有pixel的交叉熵损失进行一个求平均操作就得到了一个我们网络的最终的一个损失

六、语义分割评价指标

在这里插入图片描述

见前言:语义分割前沿

七、代码实现

在这里插入图片描述
ResNet-50中先经过conv1 7*7的一个卷积

  • conv_2:3*3的一个最大池化下采样,再接上3个残差块(对应右图layer1)
  • conv_3:4个残差块(对应layer2)

不 同 的 地 方 : \color{red}{不同的地方:}

  • layer3:这里也有6个残差结构,1个Bottleneck1+5个Bottleneck2
  • layer4:3个残差结构,1个Bottleneck1+2个Bottleneck2

Bottleneck1:

  • 将残差连接的2*2卷积层步距改为1,原来resnet这个分支会进行一个下采样将高和宽缩短为一半,【这里因为语义分割中下采样倍率过大的话,再还原成原图后,这里的效果其实会受影响,所以我们这里就没有必要再做一个下采样了。】

  • 此外主干分支3*3卷积的步距也从2改为了1,同时引入了r参数,即膨胀系数。

在这里插入图片描述
Bottleneck2:
在这里插入图片描述
接下来通过FCN Head模块:33卷积层缩小通道为原来的1/4【2048-512】,再通过一个dropout和一个11卷积层,这里11卷积层调整特征层的channel为分割类别中的类别个数。
最后经过双线性插值还原特征图大小到原图。【图例:输入480
480,上采样也到480*480】
在这里插入图片描述

layer3中引出的一条FCN Head,官方回答:为了防止误差梯度没法传递到网络浅层,这里就引入了一个辅助分类器。和google net中辅助分类器是差不多的。
训练的时候是可以使用辅助分类器件的【可用可不用,都可以试一下】,但是最后去预测或者部署到正式环境的时候只用主干的output,不用aux output。
在这里插入图片描述
up主的代码地址:https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_segmentation/fcn


http://chatgpt.dhexx.cn/article/EcYi7WO8.shtml

相关文章

FCN网络结构解析

daily:作为深度学习图片分割第一个学习的网络结构 Q1: 为什么要用FCN? A1:应为和以前网络R-CNN,SDS相比提升比较大 Q2:与CNN什么区别? A2:使用全卷积层代替全连接层 Q3:为什么要进行…

FCN网络详解

参考视频:FCN网络结构详解(语义分割)_哔哩哔哩_bilibili FCN是首个端对端的针对像素级预测的全卷积网络 这是作者提出的网络中的输出对比图,可以看到当FCN-8s效果接近真实分割图。 普通卷积分类网络与FCN对比 在这个模型提出之前,我们来看一下…

FCN全卷积神经网络

目录 前言 一、FCN的意义 二、先验知识 1.FCN-32S,FCN-16S,FCN-8S 2.上采样,下采样 3.大体网络结构 4.与传统网络(带全连接层的网络)区别 5.传统网络VGG网络结构 三、FCN网络结构解析 1.FCN-32S 2.FCN-16S 3.FCN-8S !!!重要&…

FCN算法详解

基于全卷积网络的语义分割 1. 摘要 卷积网络是一种强大的视觉模型,可产生特征的层次结构。卷积网络在语义分割方面的应用已超过了最先进的水平。本文关键是建立“全卷积”网络,它接受任意大小的输入,并通过有效的前向传播产生相应大小的输出。本文定义并详细描述了全卷积网…

FCN网络(Fully Convolutional Networks)

首个端到端的针对像素级预测的全卷积网络 原理:将图片进行多次卷积下采样得到chanel为21的特征层,再经过上采样得到和原图一样大的图片,最后经过softmax得到类别概率值 将全连接层全部变成卷积层:通常的图像分类网络最后几层是全…

FCN网络(Fully Convolutional Networks for Semantic Segmentation)

一.概述 FCN是深度学习应用在图像分割的代表作, 是一种端到端(end to end)的图像分割方法, 让网络做像素级别的预测直接得出label map。因为FCN网络中所有的层都是卷积层,故称为全卷积网络。 全卷积神经网络主要使用了三种技术: 卷积化(Con…

FCN的代码解读

目录 模型初始化 VGG初始化 FCN初始化 图片的预处理 图片处理 图片编码 计算相关参数 模型训练 一个小问题 完整代码 参考 最近浅研究了一下关于图像领域的图像分割的相关知识,发现水还是挺深的,因为FCN差不多也是领域的开山鼻祖,所以就先从…

FCN网络介绍

目录 前言一.FCN网络二.网络创新点 前言 在图像分割领域,有很多经典的网络,如MASK R-CNN,U-Net,SegNet,DeepLab等网络都是以FCN为基础进行设计的。我们这里简单介绍一下这个网络。 一.FCN网络 FCN 即全卷积网络&#…

FCN简单理解

文章目录 整体把握卷积层替换全连接层的意义卷积层替换全连接层的具体方法网络结构中“放大”、“缩小”跳级的思想损失函数 整体把握 FCN的论文主要集中于语义分割,当然这种结构现在已经运用在计算机视觉的各种任务中。FCN创造性的将传统CNN的全连接层都转换成了卷…

全卷积神经网络(FCN)

目录 卷积化上采样跳跃结构卷积化上采样跳跃结构 卷积化 上采样 跳跃结构 论文:Fully Convolutional Networks for Semantic Segmentation(2015) 参考:https://zhuanlan.zhihu.com/p/80715481 全卷积神经网络(Fully Convolutional Networks…

全卷积网络(FCN)实战:使用FCN实现语义分割

全卷积网络(FCN)实战:使用FCN实现语义分割 FCN对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题。与经典的CNN在卷积层之后使用全连接层得到固定长度的特征向量进行分类&…

FCN

转载自: http://blog.csdn.net/taigw/article/details/51401448 在上述原文的基础上结合自己理解做出了部分修改。 从图像分类到图像分割 卷积神经网络(CNN)自2012年以来,在图像分类和图像检测等方面取得了巨大的成就和广泛的应用。 CNN的强大…

FCN的理解

直观展现网络结构:http://ethereon.github.io/netscope/#/editor 卷积与逆卷积的动图https://github.com/vdumoulin/conv_arithmetic 【原文图】“Fully convolutional networks for semantic segmentation.” 上图中,32x即为扩大32倍。 Pool5扩…

FCN(全卷积网络)详解

FCN详解 全卷积网络就是在全连接网络的基础上,通过用卷积网络替换全连接网络得到的。 首先看一下什么是全连接网络,以及全连接网络的缺点。 通常的CNN网络中,在最后都会有几层全连接网络来融合特征信息,然后再对融合后的特征信…

FCN的学习及理解(Fully Convolutional Networks for Semantic Segmentation)

论文Fully Convolutional Networks for Semantic Segmentation 是图像分割的milestone论文。 理清一下我学习过程中关注的重点。 fcn开源代码 github下载地址https://github.com/shelhamer/fcn.berkeleyvision.org 核心思想 该论文包含了当下CNN的三个思潮 - 不含全连接层(…

FCN详解

FCN(fully convolution net) FCN对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题。与经典的CNN在卷积层之后使用全连接层得到固定长度的特征向量进行分类(全连接层+softmax输出)不同,FCN可以接受任意尺寸的输入图像(为什么?因为全连…

FCN(全卷积神经网络)详解

文章目录 1. 综述简介核心思想 2. FCN网络2.1 网络结构2.2 上采样 Upsampling2.3 跳级结构 3 FCN训练4. 其它4.1 FCN与CNN4.2 FCN的不足4.3 答疑 【参考】 1. 综述 简介 全卷积网络(Fully Convolutional Networks,FCN)是Jonathan Long等人于…

FCN网络解析

1 FCN网络介绍 FCN(Fully Convolutional Networks,全卷积网络) 用于图像语义分割,它是首个端对端的针对像素级预测的全卷积网络,自从该网络提出后,就成为语义分割的基本框架,后续算法基本都是在…

全卷积网络FCN详解

入门小菜鸟,希望像做笔记记录自己学的东西,也希望能帮助到同样入门的人,更希望大佬们帮忙纠错啦~侵权立删。 目录 一、FCN提出原因 二、FCN的网络结构分析 三、基本网络结构的源码分析(FCN-32s) 1、conv_relu函数—…

四、全卷积网络FCN详细讲解(超级详细哦)

四、全卷积网络FCN详细讲解(超级详细哦) 1、全卷积网络(FCN)的简单介绍1.1、CNN与FCN的比较 2、FCN上采样理论讲解2.1、双线性插值上采样2.2、反卷积上采样2.3、反池化上采样 2、 FCN具体实现过程3、 FCN模型实现过程3.1、模型训练…