基于python的图像Gabor变换及特征提取

article/2025/9/16 15:54:15

基于python的图像Gabor变换及特征提取

  • 1.前言
  • 2. “Gabor帮主”简介
  • 3.“Gabor帮主”大招之图像变换
  • 3.“Gabor帮主”大招之图像特征提取

深圳中兴网信科技有限公司:廖海斌

1.前言

在深度学习出来之前,图像识别领域北有“Gabor帮主”,南有“SIFT慕容小哥”。目前,深度学习技术可以利用CNN网络和大数据样本搞事情,从而取替“Gabor帮主”和“SIFT慕容小哥”的江湖地位。但,在没有大数据和算力支撑的“乡村小镇”地带,或是对付“刁民小辈”,“Gabor帮主”可以大显身手,具有不可撼动的地位。IT武林中,有基于C++和OpenCV,或是基于matlab的Gabor图像变换与特征提取源代码,但大多招数花哨。而基于Python语言的Gabor图像变换和特征提取却很少见。本博主在实现基于Python语言的Gabor图像变换和特征提取中发现其确实比OpenCV或matlab务实,话少人狠,特和大家分享。

2. “Gabor帮主”简介

“Gabor帮主”最厉害的武器是Gabor滤波器,其最主要使用优势体现在对物体纹理特征的提取上。Gabor滤波器对于图像的亮度和对比度变化以及图像姿态变化具有较强的鲁棒性,并且它表达的是对图像识别最为有用的局部特征,故在计算机视觉及纹理分析领域中得到广泛的应用。Gabor滤波器可以提取不同方向和不同尺度的上的特征,并且进行随意组合,变幻莫测。下图为4个方向(0o,45o,90o,135o)和6个尺度(7,9,11,13,15,17),组合生成的24个Gabor滤波核。
在这里插入图片描述

3.“Gabor帮主”大招之图像变换

所谓Gabor图像变换就使用Gabor滤波器对图像进行滤波操作(相当于CNN中的卷积操作)得到新的图像。每个滤波核与图像滤波之后得到:
在这里插入图片描述
其中,λ为波,它的值以像素为单位指定,通常大于等于2。但不能大于输入图像尺寸的五分之一;
θ为方向,指定了Gabor函数并行条纹的方向,它的取值为0到2π;
ϕ为相位偏移,它的取值范围为−π到π。其中,0、π度分别对应中心对称的center-on函数和center-off函数,而-π/2和π/2对应反对称函数;
γ为长宽比,空间纵横比,决定了Gabor函数形状的椭圆率,当γ=1时,形状是圆的,当γ<1时,形状随着平行条纹方向而拉长,通常该值为0.5;
σ表示Gabor函数的高斯因子的标准差,它的值不能直接设置,它仅随着带宽b变化,带宽值必须是正实数,通常为1,此时,标准差和波长的关系为:σ=0.56λ;带宽(b):Gabor滤波器的半响应空间频率带宽:在这里插入图片描述
x’,y’的值为:在这里插入图片描述
gabor滤波核是复数形式,因此可以把它分开成实部和虚部:
在这里插入图片描述
在这里插入图片描述
弄清以上公式原理后,大家也可以自己尝试利用Python把Gabor变换实现,源代码我这里就不贴了,如果大家感兴趣,可以参考https://www.cnblogs.com/wojianxin/p/12574089.html。其实,skimage包中就有封装好的gabor变换函数,可以直接调用。因此,这里介绍一种简单偷懒的方式。从skimage中导入filters(from skimage import filters)后,便可调用gabor函数了,其函数说明如下:
skimage.filters.gabor(image, frequency, theta=0, bandwidth=1, sigma_x=None, sigma_y=None, n_stds=3, offset=0, mode=‘reflect’, cval=0)
1)函数返回:
Gabor变换后的实部和虚部real,imag;大小与输入图像尺寸相同。
2)函数参数:
图像(image):二维数组输入图像(灰度图像);
频率(frequency):浮点谐波函数的空间频率,控制尺度;在这里插入图片描述
,在图像特征提取领域通常取5个不同尺度在这里插入图片描述
方向(theta):float,可选的弧度方向,如果为0,则谐波处于x方向;在这里插入图片描述
,在图像特征提取领域通常取8个不同方向u=[0,1,2,3,4,5,6,7]。
带宽(bandwidth):浮点,可选由过滤器捕获的带宽。对于固定带宽,sigma_x和sigma_y将随着频率的增加而降低,如果用户设置了sigma_x和sigma_y,则该值将被忽略;标准偏差(sigma_x,sigma_y):float,x和y方向上的可选标准偏差;
内核的线性大小(n_stds):标量,可选内核的线性大小为n_stds(默认为3)标准偏差;偏移量(offset):浮点数,可选项以弧度表示的谐波函数的相位偏移;模式(mode):{‘constant’,‘near’,‘reflect’,‘mirror’,‘wrap’},可选用于将图像与内核进行卷积的模式,传递给ndi.convolve;cval:标量,可选值如果卷积模式为’不变’,该参数被传递给ndi.convolve。
3)源代码如下:

import matplotlib.pyplot as plt
from skimage import filters,io,color
import numpy as npfilename='D:/lena.jpg'
img = io.imread(filename)#读取图像
img_gray = color.rgb2gray(img)#RGB转灰度
frequency=0.6
#调用gabor函数
real, imag = filters.gabor(img_gray, frequency=0.6,theta=45,n_stds=5)
#取模图像
img_mod=np.sqrt(real.astype(float)**2+imag.astype(float)**2)
#图像显示
plt.figure()
plt.subplot(2,2,1)
plt.imshow(img_gray,cmap='gray')
plt.subplot(2,2,2)
plt.imshow(img_mod,cmap='gray')
plt.subplot(2,2,3)
plt.imshow(real,cmap='gray')
plt.subplot(2,2,4)
plt.imshow(imag,cmap='gray')
plt.show()

4)运行结果如下:
左上角为原图,右上角为变换后的模图像,左下角为变换后实部图像,右下角为变换后虚部图像)
5)注意事项
①通过theta参数调不同方向,这里输入是弧度,不是角度。②通过frequency参数调不同尺度变化。
6)利用skimage生成gobor卷积核:gabor_kernel
skimage.filters.gabor_kernel(frequency, theta=0, bandwidth=1, sigma_x=None, sigma_y=None, n_stds=3, offset=0)
函数返回:返回2D Gabor滤波器内核,包含实部与虚部。
参数与skimage.filters.gabor()函数相同。
源代码如下:

import matplotlib.pyplot as plt
from skimage import filters
gk = filters.gabor_kernel(frequency=0.1,theta=np.pi*30/180.0,n_stds=5)
mod=np.sqrt(gk.real.astype(float) ** 2 + gk.imag.astype(float) ** 2)
plt.figure()
plt.subplot(1,3,1)
plt.imshow(gk.real*255,cmap='gray')
plt.subplot(1,3,2)
plt.imshow(gk.imag*255,cmap='gray')
plt.subplot(1,3,3)
plt.imshow(mod*255,cmap='gray')
plt.show()

运行结果如下:
在这里插入图片描述
注意事项:①参数n_stds=3并不是说滤波核大小为(3,3),滤波核大小由参数frequency、theta、n_stds三个参数共同决定。②gabor_kernel函数返回是带有实部和虚部的复矩阵。③theta是弧度,不是角度

3.“Gabor帮主”大招之图像特征提取

Gabor滤波器可以在频域上不同尺度、不同方向上提取相关的特征。另外,Gabor函数与人眼的作用相仿,所以经常用作纹理识别上,并取得了较好的效果。Gabor特征提取一般包括取模、特征降维、特征归一化和特征选取等操作:
取模:skimage.filters.gabor()函数返回的是图像变换后的实部和虚部,在图像识别领域一般使用其模作为图像特征在这里插入图片描述
2)特征降维:skimage.filters.gabor()函数返回值大小和原图像一样;另外,图像识别领域一般使用8个方向和5个尺度的gabor滤波器,得到40幅变换图像;导致提取的图像特征维度(40幅图像特征串联)比较高。因此,需要对取模图像进行降维处理。最简单的方法就是对每个模图像进行下采样,如使用Opencv中的resize函数cv2.resize(img,(0,0),fx=1/4,fy=1/4)。
3)特征归一化:
在机器学习领域中,不同评价指标(即特征向量中的不同特征就是所述的不同评价指标)往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。其中,最典型的就是数据的归一化处理。简而言之,归一化的目的就是使得预处理的数据被限定在一定的范围内。本博主介绍一种Z-score标准化方法:
当一化公式:在这里插入图片描述
其中μ为所有样本数据的均值,σ为所有样本数据的标准差。
b)本方法要求原始数据的分布可以近似为高斯分布,否则归一化的效果会变得很糟糕;
c)应用场景:在分类、聚类算法中,需要使用距离来度量相似性的时候、或者使用PCA技术进行降维的时候,Z-score standardization表现更好。
4)特征选取
经过以上三步后,可以将各模图像特征串联起来作为输入图像的特征向量。但此时得到的特征向量存在大量冗余,最好再进行一次特征降维(特征选取)操作。可以采用PCA或Fisher等线性子空间分析方法。
5)源代码:

import cv2
import numpy as np
from skimage import filters
filename='D:/lena.jpg'
img = cv2.imread(filename)#读图像
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#转灰度
frequency=0.6
#gabor变换
real, imag = filters.gabor(img_gray, frequency=0.6,theta=45,n_stds=5)
#取模
img_mod=np.sqrt(real.astype(float)**2+imag.astype(float)**2)
#图像缩放(下采样)
newimg = cv2.resize(img_mod,(0,0),fx=1/4,fy=1/4,interpolation=cv2.INTER_AREA)
tempfea = newimg.flatten()#矩阵展平
tmean = np.mean(tempfea)#求均值
tstd = np.std(tempfea)#求方差
newfea = (tempfea - tmean)/tstd#数值归一化
print(newfea)

夜已深,公司都没有一个人了,空荡荡的。先写到这里吧,第一次在CSDN上发博文,有不到之处请指正,如果您觉得还有点用,请点个赞以支鼓励,不胜感激!!!!


http://chatgpt.dhexx.cn/article/ouMCjX3I.shtml

相关文章

Gabor滤波器详解

转载自如何理解Gabor滤波器 介绍 我们已经知道&#xff0c;傅里叶变换是一种信号处理中的有力工具&#xff0c;可以帮助我们将图像从空域转换到频域&#xff0c;并提取到空域上不易提取的特征。但是经过傅里叶变换后&#xff0c;图像在不同位置的频度特征往往混合在一起&…

Gabor 变换

http://blog.sina.com.cn/s/blog_48a242d601000a3j.html Gabor变换属于加窗傅立叶变换&#xff0c;Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。另外Gabor函数与人眼的生物作用相仿&#xff0c;所以经常用作纹理识别上&#xff0c;并取得了较好的效果。 Gabor变换…

图像处理:Gabor滤波器简介以及python实现

在图像处理中&#xff0c;以Dennis Gabor命名的Gabor滤波器是一种用于纹理分析的线性滤波器&#xff0c;本质上是指在分析点或分析区域周围的局部区域内&#xff0c;分析图像中是否存在特定方向的特定频率内容。Gabor滤波器的频率和方向表示被许多当代视觉科学家认为与人类视觉…

Gabor滤波器学习

本文的目的是用C实现生成Gabor模版&#xff0c;并对图像卷积。并简单提一下&#xff0c;Gabor滤波器在纹理特征提取上的应用。 一、什么是Gabor函数&#xff08;以下内容含部分翻译自维基百科&#xff09; 在图像处理中&#xff0c;Gabor函数是一个用于边缘提取的线性滤波器。…

Gabor变换

2009-12-13 00:51:08| 分类&#xff1a; 图像处理|字号 订阅 转自 http://blog.sina.com.cn/s/blog_48a242d601000a3j.html~typev5_one&labelrela_prevarticle Gabor变换属于加窗傅立叶变换&#xff0c;Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。另外Gabo…

Gabor滤波器

Gabor是一个用于边缘提取的线性滤波器&#xff0c;其频率和方向表达与人类视觉系统类似&#xff0c;能够提供良好的方向选择和尺度选择特性&#xff0c;而且对光照变换不敏感&#xff0c;因此十分适合纹理分析。 一、Gabor滤波器 在图像处理中&#xff0c;Gabor函数是一个用于…

Gabor 特征

一.Gabor 特征的简介 Gabor 特征是一种可以用来描述图像纹理信息的特征&#xff0c;Gabor 滤波器的频率和方向与人类的视觉系统类似&#xff0c;特别适合于纹理表示与判别。Gabor 特征主要依靠 Gabor 核在频率域上对信号进行加窗&#xff0c;从而能描述信号的局部频率信息。 …

Gabor滤波器特征提取原理讲解及c++实现

文章目录 Gabor滤波器复正弦载波高斯滤波 参数解释gabor滤波核实现效果&#xff1a; Gabor滤波器 1946年,Dennis Gabor于在“Theory of communication”一文中提出了著名的“窗口”傅里叶变换&#xff08;也叫短时Fourier变换&#xff0c;STFT&#xff09;&#xff0c;即Gabor…

FCN学习

简介 FCN(Fully Convolutional Networks for Semantic Segmentation)是首个端对端的针对像素级别预测的全卷积网络&#xff0c;发表在2015CVPR。全卷积的意思是全连接层全部替换成了卷积层。 上面这句话的重点是全卷积&#xff0c;但是端到端end to end这个词也同样重要。end…

卷积神经网络CNN(3)—— FCN(Fully Convolutional Networks)要点解释

前言 参考FCN论文&#xff1a;Fully Convolutional Networks for Semantic Segmentation FCN作为图像语义分割的先河&#xff0c;实现像素级别的分类&#xff08;即end to end&#xff0c;pixel-wise&#xff09;&#xff0c;为后续使用CNN作为基础的图像语义分割模型提供重要…

语义分割——FCN模型pytorch实现

FCN网络简介 全卷积网络&#xff08;Fully Convolutional Networks&#xff0c;FCN&#xff09;是Jonathan Long等人于2015年在Fully Convolutional Networks for Semantic Segmentation一文中提出的用于图像语义分割的一种框架&#xff0c;是首个端对端的针对像素级预测的全卷…

全卷积网络 FCN 详解

原文链接&#xff1a;全卷积网络 FCN 详解 FCN是深度学习应用在图像分割的代表作, 是一种端到端(end to end)的图像分割方法, 让网络做像素级别的预测直接得出label map, 下面我们来看看FCN是如何做到像素级别的分类的 论文 : Fully Convolutional Networks for Semantic Segme…

图像分割-FCN全卷积神经网络(完整代码详解)

目录 FCN全卷积神经网络 实现过程 全卷积 反卷积 FCN的三点创新 code FCN全卷积神经网络 FCN为深度学习在语义分割领域的开山之作&#xff0c;提出使用卷积层代替CNN中的全连接操作&#xff0c;生成热力图heat map而不是类别。 实现过程 图1 FCN网络结构 包括全卷积过程…

FCN网络学习笔记

目录 前言1. 网络结构2. 损失计算&#xff1a;Cross Entropy Loss参考 前言 FCN网络是首个端对端的针对像素级预测的全卷积网络。 其中&#xff0c;全卷积的含义是将分类网络的全连接层全部替换成了卷积层。使用了分类网络作为backbone&#xff0c;将会复用分类网路在ImageNet…

深度学习-全卷积神经网络(FCN)

1. 简介 全卷积神经网络&#xff08;Fully Convolutional Networks&#xff0c;FCN&#xff09;是Jonathan Long等人于2015年在Fully Convolutional Networks for Semantic Segmentation一文中提出的用于图像语义分割的一种框架&#xff0c;是深度学习用于语义分割领域的开山之…

FCN全卷积网络理解及代码实现(来自pytorch官方实现)

视频链接&#xff1a;https://www.bilibili.com/video/BV1J3411C7zd?vd_sourcea0d4f7000e77468aec70dc618794d26f 代码&#xff1a;https://github.com/WZMIAOMIAO/deep-learning-for-image-processing FCN是2015年提出的首个端对端的针对像素级预测的全卷积网络。 如今的pyt…

FCN网络结构解析

daily&#xff1a;作为深度学习图片分割第一个学习的网络结构 Q1&#xff1a; 为什么要用FCN&#xff1f; A1&#xff1a;应为和以前网络R-CNN&#xff0c;SDS相比提升比较大 Q2&#xff1a;与CNN什么区别&#xff1f; A2:使用全卷积层代替全连接层 Q3&#xff1a;为什么要进行…

FCN网络详解

参考视频&#xff1a;FCN网络结构详解(语义分割)_哔哩哔哩_bilibili FCN是首个端对端的针对像素级预测的全卷积网络 这是作者提出的网络中的输出对比图&#xff0c;可以看到当FCN-8s效果接近真实分割图。 普通卷积分类网络与FCN对比 在这个模型提出之前&#xff0c;我们来看一下…

FCN全卷积神经网络

目录 前言 一、FCN的意义 二、先验知识 1.FCN-32S,FCN-16S,FCN-8S 2.上采样&#xff0c;下采样 3.大体网络结构 4.与传统网络&#xff08;带全连接层的网络&#xff09;区别 5.传统网络VGG网络结构 三、FCN网络结构解析 1.FCN-32S 2.FCN-16S 3.FCN-8S !!!重要&…

FCN算法详解

基于全卷积网络的语义分割 1. 摘要 卷积网络是一种强大的视觉模型,可产生特征的层次结构。卷积网络在语义分割方面的应用已超过了最先进的水平。本文关键是建立“全卷积”网络,它接受任意大小的输入,并通过有效的前向传播产生相应大小的输出。本文定义并详细描述了全卷积网…