Gabor特征提取

article/2025/9/15 16:19:27

Gabor小波与人类视觉系统中简单细胞的视觉刺激响应非常相似。它在提取目标的局部空间和频率域信息方面具有良好的特性。虽然Gabor小波本身并不能构成正交基,但在特定参数下可构成紧框架。Gabor小波对于图像的边缘敏感,能够提供良好的方向选择和尺度选择特性,而且对于光照变化不敏感,能够提供对光照变化良好的适应性。上述特点使Gabor小波被广泛应用于视觉信息理解。二维Gabor小波变换是在时频域进行信号分析处理的重要工具,其变换系数有着良好的视觉特性和生物学背景,因此被广泛应用于图像处理、模式识别等领域。与传统的傅立叶变换相比,Gabor小波变换具有良好的时频局部化特性。即非常容易地调整Gabor滤波器的方向、基频带宽及中心频率从而能够最好的兼顾信号在时空域和频域中的分辨能力;Gabor小波变换具有多分辨率特性即变焦能力。即采用多通道滤波技术,将一组具有不同时频域特性的Gabor小波应用于图像变换,每个通道都能够得到输入图像的某种局部特性,这样可以根据需要在不同粗细粒度上分析图像。此外,在特征提取方面,Gabor小波变换与其它方法相比:一方面其处理的数据量较少,能满足系统的实时性要求;另一方面,小波变换对光照变化不敏感,且能容忍一定程度的图像旋转和变形,当采用基于欧氏距离进行识别时,特征模式与待测特征不需要严格的对应,故能提高系统的鲁棒性。

无论从生物学的角度还是技术的角度,Gabor特征都有很大的优越性。研究表明,在基本视觉皮层里的简单细胞的感受野局限在很小的空域范围内,并且高度结构化。Gabor变换所采用的核(Kernels)与哺乳动物视觉皮层简单细胞2D感受野剖面(Profile)非常相似,具有优良的空间局部性和方向选择性,能够抓住图像局部区域内多个方向的空间频率(尺度)和局部性结构特征。这样,Gabor分解可以看作一个对方向和尺度敏感的有方向性的显微镜。同时,二维Gabor函数也类似于增强边缘以及峰、谷、脊轮廓等底层图像特征,这相当于增强了被认为是面部关键部件的眼睛、鼻子、嘴巴等信息,同时也增强了诸于黑痣、酒窝、伤疤等局部特征,从而使得在保留总体人脸信息的同时增强局部特性成为可能.它的小波特性说明了Gabor滤波结果是述图像局部灰度分布的有力工具,因此,可以使用Gabor滤波来抽取图像的纹理信息. 由于Gabor特征具有良好的空间局部性和方向选择性,而且对光照、姿态具有一定的鲁棒性,因此在人脸识别中获得了成功的应用。然而,大部分基于Gabor特征的人脸识别算法中,只应用了Gabor幅值信息,而没有应用相位信息,主要原因是Gabor相位信息随着空间位置呈周期性变化,而幅值的变化相对平滑而稳定,幅值反映了图像的能量谱,Gabor幅值特征通常称为Gabor 能量特征(Gabor Energy Features. Gabor小波可像放大镜一样放大灰度的变化,人脸的一些关键功能区域(眼睛、鼻子、嘴、眉毛等)的局部特征被强化,从而有利于区分不同的人脸图像。Gabor小波核函数具有与哺育动物大脑皮层简单细胞的二维反射区相同的特性,即

具有较强的空间位置和方向选择性,并且能够捕捉对应于空间和频率的局部结构信息;Gabor滤波器对于图像的亮度和对比度变化以及人脸姿态变化具有较强的健壮性,并且它表达的是对人脸识别最为有用的局部特征。Gabor 小波是对高级脊椎动物视觉皮层

中的神经元的良好逼近,是时域和频域精确度的一种折中。

Gabor函数是一个用高斯函数调制的复正弦函数,能够在给定区域内提取出局部的频域特征.一个典型的2-D Gabor函数h(x,y)及其傅立叶变换H(u,v)有以下形式:

其中:g(x,y)是用来调制的高斯函数;σx和σy是其在两个坐标轴上的标准方差,它们决定了滤波器作用区域的大小;W为复正弦函数在横轴上的频率.

Gabor函数分解为实部hR(x,y)和虚部hI(x,y)两个分量,则用它滤波得到的图像为



其中,(h*I)表示图像I和滤波器h的卷积.S(x,y)经过高斯平滑,即为该Gabor滤波器提取出的特征图像.

如果以h(x,y)为母小波,通过对其进行适当的尺度变换和旋转变换,我们可以得到一组自相似的滤波器,称为Gabor小波.

hmn(x,y)=amh(x′,y′),a>1,m,nZ(3)

其中:x′=am(xcosθ+ysinθ),y′=am(−xcosθ+ysinθ),θ=nπ/K;am为尺度因子;SK为尺度和方向的数目,m=0,1,…,S−1,n=0,1,…,K−1.通过改变mn的值,就可以得到一组方向和尺度不同的Gabor滤波器.假设小波族包含S个尺度,K个方向,并且频率范围为[Ul,Uh],一种参数选择方法如下



复数:

 

实部:

虚部:



其中:

公式中:

λ:正弦函数波长;

θ:Gabor核函数的方向

ψ:相位偏移

σ:高斯函数的标准差

γ: 空间的宽高比


http://chatgpt.dhexx.cn/article/YWRRKnZx.shtml

相关文章

Gabor 卷积神经网络

与不涉及学习过程的 hand-crafted 滤波器不同,DCNNs-based feature extraction 是一种 data-driven 技术,可以直接从数据中学习具有鲁棒性的特征表示。然而,它有非常大的训练成本和复杂的模型参数。 DCNNs 有限的几何变换建模能力主要来自于…

如何理解Gabor滤波器

转载自如何理解Gabor滤波器 介绍 我们已经知道,傅里叶变换是一种信号处理中的有力工具,可以帮助我们将图像从空域转换到频域,并提取到空域上不易提取的特征。但是经过傅里叶变换后,图像在不同位置的频度特征往往混合在一起&…

基于python的图像Gabor变换及特征提取

基于python的图像Gabor变换及特征提取 1.前言2. “Gabor帮主”简介3.“Gabor帮主”大招之图像变换3.“Gabor帮主”大招之图像特征提取 深圳中兴网信科技有限公司:廖海斌 1.前言 在深度学习出来之前,图像识别领域北有“Gabor帮主”,南有“SIF…

Gabor滤波器详解

转载自如何理解Gabor滤波器 介绍 我们已经知道,傅里叶变换是一种信号处理中的有力工具,可以帮助我们将图像从空域转换到频域,并提取到空域上不易提取的特征。但是经过傅里叶变换后,图像在不同位置的频度特征往往混合在一起&…

Gabor 变换

http://blog.sina.com.cn/s/blog_48a242d601000a3j.html Gabor变换属于加窗傅立叶变换,Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。另外Gabor函数与人眼的生物作用相仿,所以经常用作纹理识别上,并取得了较好的效果。 Gabor变换…

图像处理:Gabor滤波器简介以及python实现

在图像处理中,以Dennis Gabor命名的Gabor滤波器是一种用于纹理分析的线性滤波器,本质上是指在分析点或分析区域周围的局部区域内,分析图像中是否存在特定方向的特定频率内容。Gabor滤波器的频率和方向表示被许多当代视觉科学家认为与人类视觉…

Gabor滤波器学习

本文的目的是用C实现生成Gabor模版,并对图像卷积。并简单提一下,Gabor滤波器在纹理特征提取上的应用。 一、什么是Gabor函数(以下内容含部分翻译自维基百科) 在图像处理中,Gabor函数是一个用于边缘提取的线性滤波器。…

Gabor变换

2009-12-13 00:51:08| 分类: 图像处理|字号 订阅 转自 http://blog.sina.com.cn/s/blog_48a242d601000a3j.html~typev5_one&labelrela_prevarticle Gabor变换属于加窗傅立叶变换,Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。另外Gabo…

Gabor滤波器

Gabor是一个用于边缘提取的线性滤波器,其频率和方向表达与人类视觉系统类似,能够提供良好的方向选择和尺度选择特性,而且对光照变换不敏感,因此十分适合纹理分析。 一、Gabor滤波器 在图像处理中,Gabor函数是一个用于…

Gabor 特征

一.Gabor 特征的简介 Gabor 特征是一种可以用来描述图像纹理信息的特征,Gabor 滤波器的频率和方向与人类的视觉系统类似,特别适合于纹理表示与判别。Gabor 特征主要依靠 Gabor 核在频率域上对信号进行加窗,从而能描述信号的局部频率信息。 …

Gabor滤波器特征提取原理讲解及c++实现

文章目录 Gabor滤波器复正弦载波高斯滤波 参数解释gabor滤波核实现效果: Gabor滤波器 1946年,Dennis Gabor于在“Theory of communication”一文中提出了著名的“窗口”傅里叶变换(也叫短时Fourier变换,STFT),即Gabor…

FCN学习

简介 FCN(Fully Convolutional Networks for Semantic Segmentation)是首个端对端的针对像素级别预测的全卷积网络,发表在2015CVPR。全卷积的意思是全连接层全部替换成了卷积层。 上面这句话的重点是全卷积,但是端到端end to end这个词也同样重要。end…

卷积神经网络CNN(3)—— FCN(Fully Convolutional Networks)要点解释

前言 参考FCN论文:Fully Convolutional Networks for Semantic Segmentation FCN作为图像语义分割的先河,实现像素级别的分类(即end to end,pixel-wise),为后续使用CNN作为基础的图像语义分割模型提供重要…

语义分割——FCN模型pytorch实现

FCN网络简介 全卷积网络(Fully Convolutional Networks,FCN)是Jonathan Long等人于2015年在Fully Convolutional Networks for Semantic Segmentation一文中提出的用于图像语义分割的一种框架,是首个端对端的针对像素级预测的全卷…

全卷积网络 FCN 详解

原文链接:全卷积网络 FCN 详解 FCN是深度学习应用在图像分割的代表作, 是一种端到端(end to end)的图像分割方法, 让网络做像素级别的预测直接得出label map, 下面我们来看看FCN是如何做到像素级别的分类的 论文 : Fully Convolutional Networks for Semantic Segme…

图像分割-FCN全卷积神经网络(完整代码详解)

目录 FCN全卷积神经网络 实现过程 全卷积 反卷积 FCN的三点创新 code FCN全卷积神经网络 FCN为深度学习在语义分割领域的开山之作,提出使用卷积层代替CNN中的全连接操作,生成热力图heat map而不是类别。 实现过程 图1 FCN网络结构 包括全卷积过程…

FCN网络学习笔记

目录 前言1. 网络结构2. 损失计算:Cross Entropy Loss参考 前言 FCN网络是首个端对端的针对像素级预测的全卷积网络。 其中,全卷积的含义是将分类网络的全连接层全部替换成了卷积层。使用了分类网络作为backbone,将会复用分类网路在ImageNet…

深度学习-全卷积神经网络(FCN)

1. 简介 全卷积神经网络(Fully Convolutional Networks,FCN)是Jonathan Long等人于2015年在Fully Convolutional Networks for Semantic Segmentation一文中提出的用于图像语义分割的一种框架,是深度学习用于语义分割领域的开山之…

FCN全卷积网络理解及代码实现(来自pytorch官方实现)

视频链接:https://www.bilibili.com/video/BV1J3411C7zd?vd_sourcea0d4f7000e77468aec70dc618794d26f 代码:https://github.com/WZMIAOMIAO/deep-learning-for-image-processing FCN是2015年提出的首个端对端的针对像素级预测的全卷积网络。 如今的pyt…

FCN网络结构解析

daily:作为深度学习图片分割第一个学习的网络结构 Q1: 为什么要用FCN? A1:应为和以前网络R-CNN,SDS相比提升比较大 Q2:与CNN什么区别? A2:使用全卷积层代替全连接层 Q3:为什么要进行…