基于遗传算法GA算法优化BP神经网络(Python代码实现)

article/2025/9/23 8:59:04

一、 概述

    BP-GA算法的设计︰基于遗传算法的BP神经网络算法(以下简称BP-GA)就是在BP神经网络的学习过程中,将权重和阀值描述为染色体,并选取适宜的适应函数,然后进行GA迭代,直到某种意义上的收敛.与普通BP学习算法相比,算法 BP一GA的优势在于可以处理一些传统方法不能处理的例子,例如不可导的特性函数(传递函数)或者没有梯度信息存在的节点.该算法涉及到两个关键问题,分别是染色体位串与权系值的编码映射和评价函数。

二、运行结果

部分代码:

def load_data_wrapper(filename):lineData = []with open(filename) as txtData:lines = txtData.readlines()for line in lines:linedata = line.strip().split(',')lineData.append(linedata)return lineData
# 提出特征和标签,特征做输入,标签为输出
def splitData(dataset):Character= []Label = []for i in range(len(dataset)):Character.append([float(tk) for tk in dataset[i][1:-1]])Label.append(float(dataset[i][-1]))return Character, Label
#输入特征数据归一化
def max_min_norm_x(dataset):min_data = []for i in range(len(dataset)):min_data.append(min(dataset[i]))new_min = min(min_data)max_data = []for i in range(len(dataset)):max_data.append(max(dataset[i]))new_max = max(max_data)data = np.array(dataset)data_x =[]for x in np.nditer(data, op_flags=['readwrite']):#x[...] = 2 * (x -new_min)/(new_max-new_min)-1x[...] = (x - new_min) / (new_max - new_min)#print('x[...]:',x[...])data_x.append(x[...])data_x3 = []for index in range(0, len(data_x), 3):data_x3.append([data_x[index], data_x[index+1], data_x[index+2]])#print("data_x3:",data_x3)return data_x3
def load_data_wrapper(filename):lineData = []with open(filename) as txtData:lines = txtData.readlines()for line in lines:linedata = line.strip().split(',')lineData.append(linedata)return lineData
# 提出特征和标签,特征做输入,标签为输出
def splitData(dataset):Character= []Label = []for i in range(len(dataset)):Character.append([float(tk) for tk in dataset[i][1:-1]])Label.append(float(dataset[i][-1]))return Character, Label
#输入特征数据归一化
def max_min_norm_x(dataset):min_data = []for i in range(len(dataset)):min_data.append(min(dataset[i]))new_min = min(min_data)max_data = []for i in range(len(dataset)):max_data.append(max(dataset[i]))new_max = max(max_data)data = np.array(dataset)data_x =[]for x in np.nditer(data, op_flags=['readwrite']):#x[...] = 2 * (x -new_min)/(new_max-new_min)-1x[...] = (x - new_min) / (new_max - new_min)#print('x[...]:',x[...])data_x.append(x[...])data_x3 = []for index in range(0, len(data_x), 3):data_x3.append([data_x[index], data_x[index+1], data_x[index+2]])#print("data_x3:",data_x3)return data_x3

def load_data_wrapper(filename): lineData = [] with open(filename) as txtData: lines = txtData.readlines() for line in lines: linedata = line.strip().split(',') lineData.append(linedata) return lineData # 提出特征和标签,特征做输入,标签为输出 def splitData(dataset): Character= [] Label = [] for i in range(len(dataset)): Character.append([float(tk) for tk in dataset[i][1:-1]]) Label.append(float(dataset[i][-1])) return Character, Label #输入特征数据归一化 def max_min_norm_x(dataset): min_data = [] for i in range(len(dataset)): min_data.append(min(dataset[i])) new_min = min(min_data) max_data = [] for i in range(len(dataset)): max_data.append(max(dataset[i])) new_max = max(max_data) data = np.array(dataset) data_x =[] for x in np.nditer(data, op_flags=['readwrite']): #x[...] = 2 * (x -new_min)/(new_max-new_min)-1 x[...] = (x - new_min) / (new_max - new_min) #print('x[...]:',x[...]) data_x.append(x[...]) data_x3 = [] for index in range(0, len(data_x), 3): data_x3.append([data_x[index], data_x[index+1], data_x[index+2]]) #print("data_x3:",data_x3) return data_x3

def load_data_wrapper(filename): lineData = [] with open(filename) as txtData: lines = txtData.readlines() for line in lines: linedata = line.strip().split(',') lineData.append(linedata) return lineData # 提出特征和标签,特征做输入,标签为输出 def splitData(dataset): Character= [] Label = [] for i in range(len(dataset)): Character.append([float(tk) for tk in dataset[i][1:-1]]) Label.append(float(dataset[i][-1])) return Character, Label #输入特征数据归一化 def max_min_norm_x(dataset): min_data = [] for i in range(len(dataset)): min_data.append(min(dataset[i])) new_min = min(min_data) max_data = [] for i in range(len(dataset)): max_data.append(max(dataset[i])) new_max = max(max_data) data = np.array(dataset) data_x =[] for x in np.nditer(data, op_flags=['readwrite']): #x[...] = 2 * (x -new_min)/(new_max-new_min)-1 x[...] = (x - new_min) / (new_max - new_min) #print('x[...]:',x[...]) data_x.append(x[...]) data_x3 = [] for index in range(0, len(data_x), 3): data_x3.append([data_x[index], data_x[index+1], data_x[index+2]]) #print("data_x3:",data_x3) return data_x3

完整代码:回复关键字

三、 参考文献

[1]王崇骏,于汶滌,陈兆乾,谢俊元.一种基于遗传算法的BP神经网络算法及其应用[J].南京大学学报:自然科学版,2003,39(5):459-466

[2]潘昊,王晓勇,陈琼,黄少銮.基于遗传算法的BP神经网络技术的应用[J].计算机应用,2005,25(12):2777-2779

四、 Python代码实现


http://chatgpt.dhexx.cn/article/UuAX3Z5o.shtml

相关文章

Python实现WOA智能鲸鱼优化算法优化支持向量机分类模型(SVC算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提出…

基于灰狼算法优化支持向量机的数据分类算法及其MATLAB实现-附代码

基于灰狼算法优化支持向量机的数据分类算法及其MATLAB实现-附代码 文章目录 基于灰狼算法优化支持向量机的数据分类算法及其MATLAB实现-附代码1 GWO-SVM 模型1.1 灰狼优化器GWO1.2 支持向量机分类SVM 2 基于GWO-SVM 的分类算法2.1 优化变量与目标函数的选取2.2 GWO-SVM 建模步骤…

基于麻雀算法优化LSTM回归预测(matlab)

基于麻雀算法优化LSTM回归预测(matlab) 概述: 麻雀算法构思lstm原理麻雀优化lstm原理代码及结果展示 第一部分 麻雀算法构思 众所周知,麻雀是常见的留鸟而且非常喜欢群居。这种生物是非常聪明的,有很强的记忆力&am…

鲸鱼优化算法优化BP神经网络回归预测的算法设计-附代码

鲸鱼优化算法WOA优化BP神经网络回归预测模型以及MATLAB代码实现 文章目录 鲸鱼优化算法WOA优化BP神经网络回归预测模型以及MATLAB代码实现1. 算法描述2. 鲸鱼优化算法优化BP神经网络预测的步骤与流程图设计3. WOA-BP预测算法的参数设置4. 运行结果5. MATLAB代码 1. 算法描述 鲸…

遗传算法优化BP神经网络

遗传算法原理 遗传算法背景不作介绍。遗传算法作为一种并行随机搜索最优化算法,将自然界的优胜劣汰的生物进化原理引入优化参数形成的编码串联群体中,按照所选的适应度函数并通过遗传中的选择,交叉和变异对个体进行筛选,使适应度…

基于蝙蝠算法优化BP神经网络的数据分类算法及其MATLAB实现-附代码

基于蝙蝠算法优化BP神经网络的数据分类算法及其MATLAB实现-附代码 文章目录 基于蝙蝠算法优化BP神经网络的数据分类算法及其MATLAB实现-附代码1 蝙蝠算法与BP神经网络分类模型1.1 蝙蝠算法BA1.2 one-hot编码 2 基于蝙蝠算法BA优化的BP神经网络分类算法2.1 优化变量与目标函数的…

粒子群算法优化PID参数实例

粒子群优化算法(PSO)以及Matlab实现 1、粒子群算法 粒子群算法是一种智能优化算法。关于智能,个人理解,不过是在枚举法的基础上加上了一定的寻优机制。试想一下枚举法,假设问题的解空间很小,比如一个函数 …

R-CNN算法优化策略

** R-CNN算法优化策略 ** 1,两阶段检测的进阶模型 首先进行数据处理,然后输入backbone得到特征图,然后进入RPN中提取候选区域roi,然后再ROI Align提取特争,然后送入BBox Head进行进一步的回归和分类。 主要介绍方面…

优化算法优化支持向量机(SVM)进行分类

0、前言 采用优化算法优化SVM参数进行分类。包含GWO、WOA、AFSA、AO、BAT、GTO、HBA、MPA、POA、SSA、SMA、jSSA、HHO、EO、AOA、SO等优化算法对SVM的改进。 2、实现步骤 SVM 为典型的核方法,首先选定核函数,确定待优化的核参数;其次&#x…

粒子群算法优化SVM的核参数

更新一下:以下代码是优化高斯核函数的惩罚因子和g参数的。因为在svmtrain函数中没有给-v赋值,所以是默认值2,若要优化其他核函数,可以修改svmtrain中的-v参数的值以及增加其他参数的粒子更新代码。此代码的目标函数是svmtrain三折…

粒子群算法优化的OTSU图像分割

文章目录 1 基本概念2 算法实现3 算法优化举例4 算法构成要素分析5算法优缺点分析6 算法图像分割中应用 1 基本概念 粒子群优化算法(PSO):它是进化算法的一种,它源于鸟群捕食的行为研究,基本思想是通过群体中个体之间…

【机器学习】K-Means算法优化

K-Means算法优化 学习目标1. Canopy算法配合初始聚类1.1 Canopy算法配合初始聚类实现流程1.2 Canopy算法的优缺点 2. K-means3. 二分k-means4. k-medoids(k-中心聚类算法)5. Kernel k-means6. ISODATA7. Mini Batch K-Means8. 小结 学习目标 知道K-mean…

鲸鱼算法优化PID参数优化附matlab代码

第一 章 鲸鱼优化算法 算法介绍参考文献:Seyedali Mirjalili,Andrew Lewis. The Whale Optimization Algorithm[J]. Advances in Engineering Software,2016,95. 第二章 鲸鱼优化PID参数 首先我们需要建立一个直流电机PID控制系统,WOA算法通过将系统上的误差作为…

麻雀优化算法 优化XGBoost的参数 python代码

文章目录 麻雀优化算法麻雀优化算法的改进加入Ten混沌序列 XGBoost原理麻雀优化算法优化XGBoost参数范围部分代码画图 优化结果评价结果和运行时间适应度曲线训练集结果测试集结果 麻雀优化算法 麻雀优化算法是2020年提出来的,该算法利用麻雀的角色分工和协作机制高…

KNN算法优化

在之前所写的KNN算法python实现里,KNN对k的选取很敏感,因为它给所有的近邻分配相同权重,无论距离测试样本有多远。为了降低该敏感性,可以使用加权KNN,给更近的近邻分配更大的权重,给较远的样本权重相应减少…

【常见的优化算法介绍】

常见的优化算法介绍 1. 批量梯度下降算法(batch gradient descent BGD) 每次迭代都需要把所有样本都送入,这样的好处是每次迭代都顾及了全部的样本,做的是全局最优化,但是有可能达到局部最优。 2. 随机梯度下降算法(…

常用优化算法介绍

作者:Walker 在机器学习的世界中,通常我们会发现有很多问题并没有最优的解,或是要计算出最优的解要花费很大的计算量,面对这类问题一般的做法是利用迭代的思想尽可能的逼近问题的最优解。我们把解决此类优化问题的方法叫做优化算法,优化算法本质上是一种数学方法,常见的…

十大经典算法及其优化

本文转自:https://blog.csdn.net/qq_40803710/article/details/80642703 算法概述 0.1 算法分类 十种常见排序算法可以分为两大类: 非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn)&#…

虚拟机里CDlinux 里的水滴 minidwep-gtk

假如什么都没有使用虚拟机打开这个系统,就搞这个 会显示 下方 表示 网卡 必须是3070 或者 8187的 网卡,自带的网卡是不支持的

CDLINUX——minidwep-gtk

1.下载CDLinux http://fastsoft.onlinedown.net/down/minidwep.zip 解压后是 2.使用虚拟机安装iso 注:版本选择“其他linux 2.6x内核” 安装参考:http://www.downza.cn/soft/12715.html 3.使用 使用参考:http://soft.onlinedown.net/s…