遗传算法优化BP神经网络

article/2025/9/23 9:30:38

遗传算法原理

遗传算法背景不作介绍。遗传算法作为一种并行随机搜索最优化算法,将自然界的优胜劣汰的生物进化原理引入优化参数形成的编码串联群体中,按照所选的适应度函数并通过遗传中的选择,交叉和变异对个体进行筛选,使适应度值较好的个体被保留,这样新的群体继承上一代,又优于上一代。反复循环,直至满足条件。

基本操作分为:

选择操作

        选择操作是指从旧群体中以一定概率选择个体到新群体中,个体被选中的概率跟适应度值有关,个体适应度越好,被选中的概率越大。

交叉操作

        指从个体中选择两个个体,通过两个染色体的交换组合,产生新的优秀个体。交叉过程为从群体中任选两个染色体,随机选择一点或多点染色体位置进行交换。

变异操作

从群体中任选一个个体,选择染色体中的一点进行变异以产生更优秀的后代。

遗传算法基本要素

        染色体编码方法,适应度函数,遗传操作和运行参数。

        染色体编码方法是指个体的编码方法,目前包括二进制法,实数法,二进制法是指把个体编码成为一个二进制串,实数法是指把个体编码成一个实数串。

        适应度函数是指根据进化目标编写的计算个体适应度值的函数,通过适应度函数计算每个个体的适应度值,提供给选择算子进行选择。

        遗传操作是指选择操作,交叉操作和变异操作。

        运行参数是遗传算法在初始化时确定的参数,主要包括群体大小M,遗传代数G,交叉概率P(c)和变异概率P(m)。

模型建立

        遗传算法优化BP神经网络分为BP神经网络结构确定,遗传算法优化,BP神经网络预测三部分。其中BP神经网络结构确定部分根据拟合函数输入输出参数个数确定BP神经网络的权值和阀值,种群中每个个体都包含了一个网络所有权值和阀值,个体通过适应度函数计算个体适应度值,遗传算法通过选择、交叉和变异操作找到最优适应度值对应个体。BP神经网络预测用遗传算法得到最优个体对网络初始权值和阀值赋值,网络经训练后预测函数输出。

遗传算法实现

        种群初始化

        个体编码方式为实数编码,每个个体均为一个实数串,由输入层和隐含层连接权值,隐含层阀值、隐含层与输出层连接权值以及输出层阀值四部分组成。个体包括了神经网络全部权值与阀值,在网络结构已知的情况下,就可以构成一个权值、阀值、结构确定的神经网络。

        适应度函数

        根据个体得到的神经网络初始权值与阀值,用训练数据训练BP神经网络后预测系统输出,把预测输出与期望输出之间的误差绝对值和E作为个体适应度值F,计算公式为

                                        F=k\sum y(i)-o(i)))

           式中,y(i)为BP神经网络第i个节点的期望输出,o(i)为第i个节点的预测输出,k为系数。

     选择操作

        遗传算法选择操作有轮盘赌法,锦标赛法等。轮盘赌法是基于适应度比例的选择策略,每个个体的选择概率p(i)为

                                        f(i)=k/F(i)

                                        p(i)=f(i)/\sum_{j=1}^{N}f(j)))

F(i)为个体i的适应度值,因为适应度越小越好,所以在个体选择前对适应度值求倒数,k为系数,N为种群个数。

交叉操作

        由于个体采用实数编码,所以交叉操作方法采用实数交叉法。第k个染色体a(k)与第l个染色体a(l)在j位的交叉方法:

                                        a(kj)=a(kj)(1-b)+a(lj)b

                                        a(lj)=a(lj)(1-b)+a(kj)b

b为[0,1]间的随机数。

变异操作

        选取第i个个体的第j个基因a(ij)进行变异,方法:

                                        

遗传算法主函数 

主函数流程:

随机初始化种群

计算种群适应度值,从中找出最优值

选择操作

交叉操作

变异操作

判断进化是否结束,否则重新计算种群适应度值

除遗传算法外,还可以采用粒子群算法,蚁群算法等优化BP神经网络


http://chatgpt.dhexx.cn/article/fqRvV7tm.shtml

相关文章

基于蝙蝠算法优化BP神经网络的数据分类算法及其MATLAB实现-附代码

基于蝙蝠算法优化BP神经网络的数据分类算法及其MATLAB实现-附代码 文章目录 基于蝙蝠算法优化BP神经网络的数据分类算法及其MATLAB实现-附代码1 蝙蝠算法与BP神经网络分类模型1.1 蝙蝠算法BA1.2 one-hot编码 2 基于蝙蝠算法BA优化的BP神经网络分类算法2.1 优化变量与目标函数的…

粒子群算法优化PID参数实例

粒子群优化算法(PSO)以及Matlab实现 1、粒子群算法 粒子群算法是一种智能优化算法。关于智能,个人理解,不过是在枚举法的基础上加上了一定的寻优机制。试想一下枚举法,假设问题的解空间很小,比如一个函数 …

R-CNN算法优化策略

** R-CNN算法优化策略 ** 1,两阶段检测的进阶模型 首先进行数据处理,然后输入backbone得到特征图,然后进入RPN中提取候选区域roi,然后再ROI Align提取特争,然后送入BBox Head进行进一步的回归和分类。 主要介绍方面…

优化算法优化支持向量机(SVM)进行分类

0、前言 采用优化算法优化SVM参数进行分类。包含GWO、WOA、AFSA、AO、BAT、GTO、HBA、MPA、POA、SSA、SMA、jSSA、HHO、EO、AOA、SO等优化算法对SVM的改进。 2、实现步骤 SVM 为典型的核方法,首先选定核函数,确定待优化的核参数;其次&#x…

粒子群算法优化SVM的核参数

更新一下:以下代码是优化高斯核函数的惩罚因子和g参数的。因为在svmtrain函数中没有给-v赋值,所以是默认值2,若要优化其他核函数,可以修改svmtrain中的-v参数的值以及增加其他参数的粒子更新代码。此代码的目标函数是svmtrain三折…

粒子群算法优化的OTSU图像分割

文章目录 1 基本概念2 算法实现3 算法优化举例4 算法构成要素分析5算法优缺点分析6 算法图像分割中应用 1 基本概念 粒子群优化算法(PSO):它是进化算法的一种,它源于鸟群捕食的行为研究,基本思想是通过群体中个体之间…

【机器学习】K-Means算法优化

K-Means算法优化 学习目标1. Canopy算法配合初始聚类1.1 Canopy算法配合初始聚类实现流程1.2 Canopy算法的优缺点 2. K-means3. 二分k-means4. k-medoids(k-中心聚类算法)5. Kernel k-means6. ISODATA7. Mini Batch K-Means8. 小结 学习目标 知道K-mean…

鲸鱼算法优化PID参数优化附matlab代码

第一 章 鲸鱼优化算法 算法介绍参考文献:Seyedali Mirjalili,Andrew Lewis. The Whale Optimization Algorithm[J]. Advances in Engineering Software,2016,95. 第二章 鲸鱼优化PID参数 首先我们需要建立一个直流电机PID控制系统,WOA算法通过将系统上的误差作为…

麻雀优化算法 优化XGBoost的参数 python代码

文章目录 麻雀优化算法麻雀优化算法的改进加入Ten混沌序列 XGBoost原理麻雀优化算法优化XGBoost参数范围部分代码画图 优化结果评价结果和运行时间适应度曲线训练集结果测试集结果 麻雀优化算法 麻雀优化算法是2020年提出来的,该算法利用麻雀的角色分工和协作机制高…

KNN算法优化

在之前所写的KNN算法python实现里,KNN对k的选取很敏感,因为它给所有的近邻分配相同权重,无论距离测试样本有多远。为了降低该敏感性,可以使用加权KNN,给更近的近邻分配更大的权重,给较远的样本权重相应减少…

【常见的优化算法介绍】

常见的优化算法介绍 1. 批量梯度下降算法(batch gradient descent BGD) 每次迭代都需要把所有样本都送入,这样的好处是每次迭代都顾及了全部的样本,做的是全局最优化,但是有可能达到局部最优。 2. 随机梯度下降算法(…

常用优化算法介绍

作者:Walker 在机器学习的世界中,通常我们会发现有很多问题并没有最优的解,或是要计算出最优的解要花费很大的计算量,面对这类问题一般的做法是利用迭代的思想尽可能的逼近问题的最优解。我们把解决此类优化问题的方法叫做优化算法,优化算法本质上是一种数学方法,常见的…

十大经典算法及其优化

本文转自:https://blog.csdn.net/qq_40803710/article/details/80642703 算法概述 0.1 算法分类 十种常见排序算法可以分为两大类: 非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn)&#…

虚拟机里CDlinux 里的水滴 minidwep-gtk

假如什么都没有使用虚拟机打开这个系统,就搞这个 会显示 下方 表示 网卡 必须是3070 或者 8187的 网卡,自带的网卡是不支持的

CDLINUX——minidwep-gtk

1.下载CDLinux http://fastsoft.onlinedown.net/down/minidwep.zip 解压后是 2.使用虚拟机安装iso 注:版本选择“其他linux 2.6x内核” 安装参考:http://www.downza.cn/soft/12715.html 3.使用 使用参考:http://soft.onlinedown.net/s…

CDliux--minidwep 无线密码渗透测试

CDliux–minidwep 无线密码破解渗透测试 一. 工具准备 1.首先下载CDLinux 用虚拟机安装,教程有很多 CDLINUX:cdlinux 2.支持cdlinux 的无线网卡选择RT 3070/或者 RT8187 某宝上有很多 二.渗透测试 1.cdlinux 安装好后链接无线网卡 2.打开minidwep-gtk …

IPWorks S/MIME Delphi Edition

IPWorks S/MIME是一套用于电子邮件加密和文档安全的综合组件。IPWorks S/MIME使用公钥密码标准(PKCS)实现加密和解密的S/MIME标准。 IPWorks S/MIME包括通用的S/MIME组件以及支持S/MIME的IPWorks POP3、IMAP、SMTP、FileMailer和HTMLMailer组件版本。还…

MinIO客户端mc使用

官网: 英文网址(最好查看英文网址):https://min.io/中文网址(没有及时更新,容易被坑):http://www.minio.org.cn/ 使用的 minio 版本是:RELEASE.2021-11-* 一、MinIO 客…

MinIO的介绍以及简单的使用

什么是MinIO MinIO是在GUN Affero通用公共许可证 v3.0 下发布的高性能对象存储.他与AmazonS3云存储服务API兼容.使用MinIO为机器学习,分析和应用程序数据工作负载构建高性能基础架构. MinIO是一个高兴能的对象存储,什么是对象存储(Object Storage Service),对象存储是支持海量用…

【LWIP】stm32用CubeMX(6.4版)配置LwIP+Ping+TCPclient+TCPserver发送信息到PC(操作部分)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言零、更新(2022.08.07)一、实验平台二、手把手全程配置步骤1.配置电脑环境2.配置cubeMX3.配置MDK(Keil5)4.配置TC…