Python实现Prophet时间序列数据建模与异常值检测(Prophet算法)项目实战

article/2025/9/20 4:03:02

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

 

1.项目背景

Prophet由facebook开源的基于python和R语言的数据预测工具,基于时间和变量值结合时间序列分解和机器学习的拟合来做的;其强大的对于当变量的预测能力,可以解决大部分的实际场景中的对单项值的预测。在时间序列分析领域,一般会把时间序列拆分成几个部分,分别是S(t)季节项,趋势项T(t),剩余项T(t),一般我们算法模型有两种,加法模型和乘法模型;同时乘法模型我们发现取对后也可以分解成加法模型。

Prophet适用于具有明显的内在规律的商业行为数据,例如:有如下特征的业务问题:

1.有至少几个月(最好是一年)的每小时、每天或每周观察的历史数据;

2.有多种人类规模级别的较强的季节性趋势:每周的一些天和每年的一些时间;

3.有事先知道的以不定期的间隔发生的重要节假日(比如国庆节);

4.缺失的历史数据或较大的异常数据的数量在合理范围内;

5.有历史趋势的变化(比如因为产品发布);

6.对于数据中蕴含的非线性增长的趋势都有一个自然极限或饱和状态。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

 

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

 

从上图可以看到,总共有9个字段。

关键代码:

3.2缺失值统计

使用Pandas工具的info()方法统计每个特征缺失情况:

从上图可以看到,数据不存在缺失值,总数据量为355条。

关键代码:

 

3.3描述性统计分析

通过Pandas工具的describe()方法来来统计变量的平均值、标准差、最大值、最小值、分位数等信息:

 

 关键代码如下:

4.探索性数据分析

4.1 PM2变量时间序列图

用Pandas工具的plot()方法进行统计绘图,如下:

从图中可以看到,变量PM2在2020年12月20日到2021年2月8日波动性最大;其它时间数值相对稳定。

4.2 PM2变量分布直方图

 

从图中可以看到,PM2变量成一定的偏态分布。

4.3 相关性分析

通过Pandas工具的corr()方法和seaborn工具的heatmap()方法绘制相关性热力图:

从图中可以看到,正数为正相关,负数为负相关,绝对值越大相关性越强。

5.特征工程

5.1 构建时间序列数据框

构建只包含PM2和DATE的数据框。关键代码如下:

6.构建Prophet时间序列模型

主要使用Prophet算法,用于时间序列预测与异常值检测。

6.1模型参数

 

7.模型预测

输出预测结果前5行:

 其中yhat列为预测值,yhat_lower和yhat_upper为95%置信区间的下边界和上边界预测值。

 

8.异常值检测

输出异常值的前5行:

 

从上图可以看出,异常值的数量总共13个。

 

从上图可以看到,阴影部分为95%置信区间的上下边界区域,异常值主要分布在95%置信区间上边界上面。

9.结论与展望

综上所述,本文采用了Prophet时间序列模型,最终证明了我们提出的模型效果良好。

本次机器学习项目实战所需的资料,项目资源如下:

项目说明:
链接:https://pan.baidu.com/s/1dW3S1a6KGdUHK90W-lmA4w 
提取码:bcbp

网盘如果失效,可以添加博主微信:zy10178083

 


http://chatgpt.dhexx.cn/article/OoCRZPhp.shtml

相关文章

结合 Prophet 的原理理解 Prophet 的使用

结合 Prophet 的原理理解 Prophet 的使用 前言 本文也是时序领域工作学习过程中的一些学习笔记,将会结合 Prophet 的原理,讲一讲如何成为一个合格的 Prophet 调包侠 使用者。如果有任何理解不到位的地方,请多多指正。 Why Prophet? Prop…

大白话Prophet模型以及简单的应用(一)

Prophet 是基于加法模型预测时间序列数据。适合于具有季节性影响的时间序列和具有多个季节的历史数据。Prophet对数据中的异常值和缺失值以及趋势的强烈变化有着较好的鲁棒性(耐操性),所以通常情况下都不需要对数据进行处理。 优点&#xff1…

Prophet算法

Prophet简介 Prophet是FaceBook公司在2017年开源的一款时间序列建模工具。Prophet的方法是将时间序列看成是关于t的一个函数,用你和函数曲线的方法进行预测,所以这和传统的时间序列模型有本质上的区别,他更倾向于机器学习的建模方式。 Prop…

时间序列模型Prophet使用详细讲解

之前我们已经讲过了如何在Windows系统下安装Python版本的Prophet。详细见这里。 接下来的几个部分,我们说下如何使用Prophet,以此来体验下Prophet的丰富内容。内容会比较多,主要翻译自官方文档。教程中使用的数据集可在 Prophet 的 github 主…

Prophet拟合模型入门学习

先展示效果: Facebook 时间序列预测算法 Prophet 的研究 Prophet 简介 Facebook 去年开源了一个时间序列预测的算法,叫做 fbprophet,它的官方网址与基本介绍来自于以下几个网站: Github:https://github.com/facebo…

时间序列预测——Prophet模型

文章链接: 时间序列预测——ARIMA模型https://blog.csdn.net/beiye_/article/details/123317316?spm1001.2014.3001.5502 1、Propht模型概述 Prophet模型是Facebook于2017年发布开源的时间序列预测框架。Prophet适用于各种具有潜在特殊特征的预测问题包括广泛的业…

Prophet 时间序列预测框架入门实践笔记

1. Prophet时间序列预测框架概述 Prophet是Facebook开源的一种时间序列预测框架,旨在使时间序列分析更加容易和快速。Prophet可以处理具有多个季节性和突发事件的时间序列数据,并且在数据缺失或异常情况下仍然能够进行良好的预测。Prophet采用了一种基于…

Prophet的原理知识

目录 1、Prophet 简介 2、Prophet 适用场景 3、Prophet 算法的输入输出 4、Prophet 算法原理 5、Prophet 使用时可设置的参数 6、Prophet 学习资料参考 7、Prophet 模型应用 7.0 背景描述7.1 导入数据7.2 拟合模型7.3 预测(使用默认参数)7.4 趋势…

Prophet:一种大规模时间序列预测模型

前言 Prophet是由facebook开发的开源时间序列预测程序,擅长处理具有季节性特征大规模商业时间序列数据。本文主要介绍了Prophet模型的设计原理,并与经典的时间序列模型ARIMA进行了对比。 1. Prophet模型原理 Prophet模型把一个时间序列看做由3种主要成分…

Prophet模型的简介以及案例分析

目录 前言一、Prophet安装以及简介二、适用场景三、算法的输入输出四、算法原理五、使用时可以设置的参数六、学习资料参考七、模型应用7-1、股票收盘价格预测7-1-1、导入相关库7-1-2、读取数据7-1-3、数据预处理以及进行训练集和测试集的划分。7-1-4、实例化Prophet对象&#…

时序预测工具库(Prophet)介绍+代码

时序预测工具库(Prophet) 一、Prophet 简介二、Prophet 适用场景三、Prophet 算法的输入输出四、Prophet 算法原理五、与机器学习算法的对比六、代码6.1 依赖安装6.2 预测demo6.3 效果图 七、参考资料八、官方链接:九、案例链接: …

图的顺序存储及其深度优先遍历和广度优先遍历

图的基本概念 在线性表中,数据元素之间是被串起来的,仅有线性关系,每个数据元素只有一个直接前驱和一个直接后继。在树形结构中,数据元素之间有着明显的层次关系,并且每一层上的数据元素可能和下一层中多个元素相关&am…

算法模板-深度优先遍历

简介 深度优先遍历,顾名思义对于树或者图中的某个节点,尽可能往一个方向深入搜索下去。具体而言,从某个节点v出发开始进行搜索,不断搜索直到该节点的所有边都被遍历完。对于很多树、图和矩阵地搜索问题,深度优先遍历是…

图的深度优先遍历java代码详解

代码是根据矩阵来实现深度优先遍历的 邻接结点就是按照vertex中的顺序来一个一个来找的 if(edges[i][j]>0&&!isVisited[j]) { return j; } 就很好的说明了 如果没找到就return -1 回到dfs(i)这一层 再retur…

图(深度优先遍历、广度优先遍历)

文章目录 一、图的概述1.1 什么是图1.2 图对比线性表和树1.3 图的常见概念 二、图的存储方式2.1 邻接矩阵2.2 邻接表 三、图的遍历3.1 图的深度优先遍历3.1.1 什么是深度优先遍历3.1.2 深度优先遍历的步骤3.1.3 深度优先遍历代码实现 3.2 图的广度优先遍历3.2.1 什么是广度优先…

树与图的深度优先遍历

目录 一、概念 二、操作说明 1.树与图的深度优先遍历 2.树的DFS序 3.树的深度 4.树的重心 5.图的连通块划分 三、例题实践 1.树的重心例题实战 a.题目描述 b.解题思路 c.代码实现 一、概念 树与图的深度优先遍历:深度优先遍历,就是在每一个…

算法总结-深度优先遍历和广度优先遍历

深度优先遍历(Depth First Search,简称DFS) 与广度优先遍历(Breath First Search,简称BFS)是图论中两种非常重要的算法,生产上广泛用于拓扑排序,寻路(走迷宫),搜索引擎,爬虫等。 一、深度优先遍历 深度优先…

图的两种遍历:深度优先遍历+广度优先遍历

一、深度优先遍历 1、简介 深度优先遍历是指按照深度方向搜索,它类似于树的先根遍历,是树的先根遍历的推广。 基本思想(通俗) 选一条路走到 底,直到 走不通,就 原路返回看看 是否还有路可走,如…

C++实现图的深度优先遍历和广度优先遍历

图的深度和广度优先遍历 图的深度优先遍历1、算法思想2、邻接矩阵构造图3、邻接表构造图 图的广度优先遍历1、算法思想2、邻接矩阵构造图 参考 图的深度优先遍历 1、算法思想 (1)从图中的某个初始点 v 出发,首先访问初始点 v.(…

深度优先遍历

1.先序序列为a,b,c,d 的不同二叉树的个数是 (14) 。 13 14 15 16 f(n)c(n 2n)/n1 2.在构建哈弗曼树时,要使树的带权路径长度最小,只需要遵循一个原则,那就是:权重越大的结点离树…