图像聚类-谱聚类

article/2025/10/9 0:11:59

最近做的一个东西跟这个相关,本来希望是用深度学习对于没有标签的图像数据进行分类,但是通常情况下,深度学习是对有标签的数据进行学习,目的是用来自动提取特征,代替传统的手工提取特征。因此,比较容易想到,对于无标签又需要分类的图像数据,可以尝试先采用聚类来解决.

 

下面的内容是译自Jan Erik Solem的《Programming Computer Vision with Python》的第6章,该书已经由朱文涛和袁勇学长对该书进行了翻译,主要涉及相关代码和实例,可以转至http://yongyuan.name/pcvwithpython/。我仅对其中第6章的理论进行翻译,中途穿插自己的理解。

 

该博文仅供交流学习,如有侵权,请联系删除。

===================================================================================

(接上)

6.3 谱聚类

聚类算法的一个有趣的类型叫做谱聚类。谱聚类相对K均值和层次聚类来说有不同的方法。

对于n个元素的相似度矩阵(或者叫affinity matrix, 有时也叫距离矩阵)是一个有着成对相似度分数的n*n矩阵。谱聚类的这个名称是从相似度矩阵构造的矩阵的谱的使用得来。这个矩阵的特征向量被用来降维,然后再聚类。

谱聚类方法的其中一个优势是唯一的输入就是这个矩阵,并且可以被你可以想到的任何相似度度量构造出来。像K均值和层次聚类这样的方法计算特征向量的平均值,这个限制了特征(或者是描述符)对向量(为了能够计算平均值)。有了谱方法,不再需要任何类型的特征向量,只有“距离”或者“相似度”。

这里描述它是如何实现的。给定一个有着相似度分数sij的n*n的相似度矩阵S,我们可以创建一个矩阵,叫做拉普拉斯矩阵

(Laplacian matrix),


其中I是单位矩阵,D是包含S的行和的对角矩阵,在拉普拉斯矩阵创建公式中的矩阵表示为


为了使得表达更加清晰,我们使用相似度元素sij的小值并且要求(术语距离矩阵也许在这个例子中更加适合)。

通过计算L的特征向量和使用对应于k个最大的特征值的k个特征向量创建一个特征向量的集合(记住我们可能会没有任何东西开始)。使用k个特征向量作为列创建一个矩阵,行将被作为新的特征向量(长度为k)。这些新的特征向量可以使用类似k均值被聚类产生最终的簇。本质上,算法做的事情是把原始的数据转换成可以被更加容易聚类的新的特征向量(在一些情况下,使用在一开始不能用的聚类算法)。

对理论足够了解之后,我们来看看应用到实际案例中的代码。同样,我们还是使用在k均值中案例中使用的字体图像。



在这个情况下,我们使用成对的欧几里德距离仅仅创建S,并计算在k个特征向量上的标准k均值聚类(在这个特殊情况下k=5)。记住矩阵V包含根据特征值排序的特征向量。最后,簇被画出来。图8表现了一个案例运行的簇(注意k均值的step在每一次运行可能会得到不同的结果)。


图8-使用拉普拉斯矩阵的特征向量生成的字体图像的谱聚类

我们也将这个案例用在我们没有任何特征向量或者任何相似度的严格定义的情况下。

对于这里提出的算法有许多不同的版本和选择。其中的每一个都有自己如何创建矩阵L和如何处理特征向量的想法。对于谱聚类和一些共同算法的更多细节可以看一看这篇论文A comparison of spectralclustering algorithms. Deepak Verma and Marina Meila. Technical report, 2003。



http://chatgpt.dhexx.cn/article/Ml5uHRCL.shtml

相关文章

聚类算法实践(二)——谱聚类、Chameleon聚类

上一篇文章里说到的层次聚类和K-means聚类,可以说是聚类算法里面最基本的两种方法(wiki的cluster analysis页面都把它们排前两位)。这次要探讨的,则是两个相对“高级”一点的方法:谱聚类和chameleon聚类。 4、谱聚类 …

谱聚类的案例

1. 政治博客数据集(见附件Pol_Blogs_CSV文件) 数据集网址一: Political blogs 数据集网址二: http://www.casos.cs.cmu.edu/computational_tools/datasets/external/polblogs/index11.php 政治博客数据是由Adamic和Glance于2005年收集并分析的. 该数据集包含了2004年美国总…

谱聚类算法 matlab

1、谱聚类算法步骤公式 (1)整理数据集,使数据集中数据在0-1之间。假设数据集m行n列。 (2)求邻接矩阵W。元素值为每一点到其他点之间距离,即权重。 (3)求相似度矩阵S,相…

谱聚类(Spectral Clustering)详解

原文地址为: 谱聚类(Spectral Clustering)详解 谱聚类(Spectral Clustering)详解 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远&…

从拉普拉斯矩阵说到谱聚类

从拉普拉斯矩阵说到谱聚类 0 引言 11月1日上午,机器学习班 第7次课,邹讲聚类(PPT),其中的谱聚类引起了自己的兴趣,邹从最基本的概念:单位向量、两个向量的正交、方阵的特征值和特征向量&#xf…

聚类--谱聚类

前言:关于谱聚类,已经有很多厉害的老师和大牛写过教程博客等,也有很不错的tutorial文章可供参考。此博文仅记述个人的一些总结、思考、疑问,算是对现有谱聚类学习资源的一个小补充。 1. 谱聚类简述 说到聚类,可能最先…

MATLAB 谱聚类

k-means 可以说是思想最简单的聚类了,但是它在应对非凸数据时却显得手足无措,例如如下的数据分类: 各类之间虽然间隔较远,但是非凸,这时候就需要引入谱聚类了(以下为谱聚类效果)。 本文参考 [1]Ulrike von Luxburg. A…

谱聚类算法详解

谱聚类(Spectral Clustering)算法简单易行,其聚类性能优于传统的K-means算法。谱聚类将数据的划分转化为对图的分割,是一种基于图论的聚类方法,其直观理解为根据图内点的相似度将图分为多个子图,使子图内部…

谱聚类算法简单理解

一、算法思想 谱聚类是基于图论的知识所演化出的算法,在聚类中广泛使用。主要思想是将所有的数据看成空间中的点,这些点之间可以用边连接起来,距离较远的两点之间边的权重值较低,距离较近的两点间边的权重值较高,然后…

了解聚类是什么。聚类方法:k-means、核聚类、层次聚类、谱聚类

聚类 1.什么是聚类2.聚类方法2.1 划分式聚类方法k-meansk-meansbi-kmeans 基于密度的方法DBSCANOPTICS算法 层次化聚类算法核聚类支持向量聚类谱聚类引言优缺点步骤 参考文档:参考 1.什么是聚类 定义 聚类(Clustering) 是按照某个特定标准(如距离)把一个数据集分割成不同的类…

【聚类】谱聚类解读、代码示例

【聚类】谱聚类详解、代码示例 文章目录 【聚类】谱聚类详解、代码示例1. 介绍2. 方法解读2.1 先验知识2.1.1 无向权重图2.1.2 拉普拉斯矩阵 2.2 构建图(第一步)2.2.1 ϵ \epsilon ϵ 邻近法2.2.2 k 近邻法2.2.3 全连接法 2.3 切图(第二步&a…

谱聚类(Spectral Clustering)原理及Python实现

谱聚类原理及Python实现 图模型 无向带权图模型 G<V,E> G < V , E > &#xff0c;每一条边上的权重 wij w i j 为两个顶点的相似度&#xff0c;从而可以定义相似度矩阵 W W ,此外还可以定义度矩阵D" role="presentation" style="position: …

谱聚类算法(Spectral Clustering)

谱聚类算法(Spectral Clustering) 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图&#xff0c;使子图内部尽量相似&#xff0c;而子图间距离尽量距离较远&#xff0c;以达到常见的聚类的目的。其中的最优是指最优目标…

谱聚类(spectral clustering)及其实现详解

Preface 开了很多题&#xff0c;手稿都是写好一直思考如何放到CSDN上来&#xff0c;一方面由于公司技术隐私&#xff0c;一方面由于面向对象不同&#xff0c;要大改&#xff0c;所以一直没贴出完整&#xff0c;希望日后可以把开的题都补充全。 先把大纲列出来&#xff1a; 一…

谱聚类算法

1. 算法思想 将所有的数据看成空间中的点&#xff0c;这些点之间可以用边连接起来。距离较远的点之间边的权重低&#xff0c;距离较近的点间边的权重高。然后对原图进行切图&#xff0c;使得不同子图间边的权重之和尽可能低&#xff0c;子图内边的权重之和尽可能高&#xff0c…

谱聚类(Spectral Clustering)算法介绍

一. 前言 本来想写关于聚类系列算法的介绍,但是聚类系列的其它几个算法原理比较简单,网上有大量的教程可以查阅。这里主要是介绍一下谱聚类算法,做一个学习笔记,同时也希望对想要了解该算法的朋友有一个帮助。关于聚类的其他系列算法,这里推荐一个写的很不错的博客。 谱…

聚类系列-谱聚类(spectral clustering)

聚类讲到此&#xff0c;也是我聚类系列的最后一篇博客了&#xff0c;最后一篇的话我们就来讲一下谱聚类。 谱聚类&#xff08;spectral clustering&#xff09;是一种基于图论的聚类方法&#xff0c;主要思想是把所有的数据看做空间中的点&#xff0c;这些点之间可以用边连接起…

谱聚类(spectral clustering)

1. 谱聚类概述 谱聚类是从图论中演化出来的算法&#xff0c;后来在聚类中得到了广泛的应用。它的主要思想是把所有的数据看做空间中的点&#xff0c;这些点之间可以用边连接起来。距离较远的两个点之间的边权重值较低&#xff0c;而距离较近的两个点之间的边权重值较高&#x…

谱聚类

谱聚类&#xff08;spectral clustering&#xff09;原理总结&#xff1a; 谱聚类&#xff08;spectral clustering&#xff09;是广泛使用的聚类算法&#xff0c;比起传统的K-Means算法&#xff0c;谱聚类对数据分布的适应性更强&#xff0c;聚类效果也很优秀&#xff0c;同时…

【机器学习】谱聚类(Spectral Clustering)

疑问 谱聚类的概念 谱聚类是一种针对图结构的聚类方法&#xff0c;将每个点都看作是一个图结构上的点&#xff0c;所以&#xff0c;判断两个点是否属于同一类的依据就是&#xff0c;两个点在图结构上是否有边相连&#xff0c;可以是直接相连也可以是间接相连。本质上就是一个图…