数据预处理----数据无量纲化(归一化和标准化)

article/2025/9/15 21:31:59

文章目录

  • 概述
    • 数据挖掘的五大步骤
    • skleran中的数据处理和特征工程
  • 数据预处理Preprocessing
    • 数据无量纲化
      • 数据归一化---MinMaxScaler
        • 示例
      • 数据标准化----StandardScaler
        • 示例
      • MinMaxScaler和StandardScaler应该选哪个

概述

数据挖掘的五大步骤

  1. 数据获取
  2. 数据预处理
    数据预处理是从数据中检测,纠正或删除损坏,不准确或不适用于模型的记录的过程
    可能面对的问题有:数据类型不同,比如有的是文字,有的是数字,有的含时间序列,有的连续,有的间断。也可能,数据的质量不行,有噪声,有异常,有缺失,数据出错,量纲不一,有重复,数据是偏态,数据量太大或太小
    数据预处理的目的:让数据适应模型,匹配模型的需求
  3. 特征工程
    特征工程是将原始数据转换为更能代表预测模型的潜在问题的特征的过程,可以通过挑选最相关的特征,提取特征以及创造特征来实现。其中创造特征又经常以降维算法的方式实现。
    可能面对的问题有:特征之间有相关性,特征和标签无关,特征太多或太小,或者干脆就无法表现出应有的数据现象或无法展示数据的真实面貌
    特征工程的目的:1) 降低计算成本,2) 提升模型上限
  4. 建模,测试模型并预测结果
  5. 上线,验证模型效果

skleran中的数据处理和特征工程

sklearn中包含众多数据处理和特征工程相关的模块,虽然刚接触sklearn时,大家都会为其中包含的各种算法的广度深度所震惊,但其实sklearn六大板块中有两块都是关于数据预处理和特征工程的,两个板块互相交互,为建模之前的全部工程打下基础。

  • 模块preprocessing:几乎包含数据预处理的所有内容
  • 模块Impute:填补缺失值专用
  • 模块feature_selection:包含特征选择的各种方法的实践
  • 模块decomposition:包含降维算法

数据预处理Preprocessing

数据无量纲化

在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”。譬如梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经网络,无量纲化可以加快求解速度;而在距离类模型,譬如K近邻,K-Means聚类中,无量纲化可以帮我们提升模型精度,避免某一个取值范围特别大的特征对距离计算造成影响。(一个特例是决策树和树的集成算法们,对决策树我们不需要无量纲化,决策树可以把任意数据都处理得很好。)
数据的无量纲化可以是线性的,也可以是非线性的。线性的无量纲化包括中心化(Zero-centered或者Meansubtraction)处理和缩放处理(Scale)。中心化的本质是让所有记录减去一个固定值,即让数据样本数据平移到某个位置。缩放的本质是通过除以一个固定值,将数据固定在某个范围之中,取对数也算是一种缩放处理

数据归一化—MinMaxScaler

  • preprocessing.MinMaxScaler
    当数据(x)按照最小值中心化后,再按极差(最大值 - 最小值)缩放,数据移动了最小值个单位,并且会被收敛到[0,1]之间,而这个过程,就叫做数据归一化(Normalization,又称Min-Max Scaling)。注意,Normalization是归一化,不是正则化,真正的正则化是regularization,不是数据预处理的一种手段。归一化之后的数据服从正态分布,公式如下:
    x ∗ = x − m i n ( x ) m a x ( x ) − m i n ( x ) x ^* = \frac {x - min(x)} {max(x) - min(x)} x=max(x)min(x)xmin(x)
    在sklearn当中,我们使用preprocessing.MinMaxScaler来实现这个功能。MinMaxScaler有一个重要参数feature_range,控制我们希望把数据压缩到的范围,默认是[0,1]。

示例

导入相关的包

from sklearn.preprocessing import MinMaxScaler
import numpy as np
import pandas as pd

数据生成

data = np.array([[-1, 2], [-0.5, 6], [0, 10], [1, 18]])
df = pd.DataFrame(data)
df

在这里插入图片描述
实现归一化

# 实现归一化,分布实现
mms = MinMaxScaler()
mms.fit(df)
res = mms.transform(df)
res# fit,transform两部和一一步直接得到归一化结果
mms = MinMaxScaler()
res = mms.fit_transform(df)
res
'''
归一化结果如下:
array([[0.  , 0.  ],[0.25, 0.25],[0.5 , 0.5 ],[1.  , 1.  ]])
'''

归一化逆转

mms.inverse_transform(res)
# 将归一化的结果逆转为原始数据
# 结果:
'''
array([[-1. ,  2. ],[-0.5,  6. ],[ 0. , 10. ],[ 1. , 18. ]])
'''

通过feature_range设置归一化后的范围

mms = MinMaxScaler(feature_range=[5, 10])
res = mms.fit_transform(df)
res
'''
array([[ 5.  ,  5.  ],[ 6.25,  6.25],[ 7.5 ,  7.5 ],[10.  , 10.  ]])
'''

数据标准化----StandardScaler

当数据x按照均值 μ \mu μ中心化后,在按照标准差 σ \sigma σ缩放,数据就会服从均值为0,方差为1的正态分布(即标准正态分布),这个过程就叫做数据标准化,标准化公式如下:
x ∗ = x − μ σ x ^* = \frac {x - \mu} {\sigma} x=σxμ

示例

from sklearn.preprocessing import StandardScaler
import numpy as np
import pandas as pddata = np.array([[-1, 2], [-0.5, 6], [0, 10], [1, 18]])
df = pd.DataFrame(data)ss = StandardScaler()
ss.fit(df)
print("均值:{},标准差{}".format(ss.mean_, ss.var_))
res = ss.transform(df)
res
'''
均值:[-0.125  9.   ],标准差[ 0.546875 35.      ]
array([[-1.18321596, -1.18321596],[-0.50709255, -0.50709255],[ 0.16903085,  0.16903085],[ 1.52127766,  1.52127766]])
'''# 一步到位的写法, 同样mean_,var_属性查看均值,标准差
res = ss.fit_transform(df)# 逆标准化
ss.inverse_transform(res)

注意
对于StandardScaler和MinMaxScaler来说,空值NaN会被当做是缺失值,在fit的时候忽略,在transform的时候保持缺失NaN的状态显示。并且,尽管去量纲化过程不是具体的算法,但在fit接口中,依然只允许导入至少二维数组,一维数组导入会报错。通常来说,我们输入的X会是我们的特征矩阵,现实案例中特征矩阵不太可能是一维所以不会存在这个问题。

MinMaxScaler和StandardScaler应该选哪个

看情况。大多数机器学习算法中,会选择StandardScaler来进行特征缩放,因为MinMaxScaler对异常值非常敏感。在PCA,聚类,逻辑回归,支持向量机,神经网络这些算法中,StandardScaler往往是最好的选择。
MinMaxScaler在不涉及距离度量、梯度、协方差计算以及数据需要被压缩到特定区间时使用广泛,比如数字图像处理中量化像素强度时,都会使用MinMaxScaler将数据压缩于[0,1]区间之中。
建议先试试看StandardScaler,效果不好换MinMaxScaler。


http://chatgpt.dhexx.cn/article/LSb7reoZ.shtml

相关文章

数学分析模型(一):数据的无量纲处理方法及示例(附完整代码)

数据的无量纲处理方法及示例(附完整代码) (1)极值化方法(2)标准化方法(3)均值化方法示例要求建模步骤程序结果备注在对实际问题建模过程中,特别是在建立指标评价体系时,常常会面临不同类型的数据处理及融合。而各个指标之间由于计量单位和数量级的不尽相同,从而使得…

数据无量纲化

数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”。譬如梯度和矩阵为核心的算法中,譬如逻辑回归,支持向…

量纲化处理汇总

在实际研究中,不同的变量单位不同,数值差异极大。例如100g和1m等。 因此有时需要对数据进行去量纲,所谓的去量纲就是‘去掉’单位对数值的影响。但是量纲化有很多种方式,但具体应该使用哪一种方式,并没有固定的标准&am…

数据预处理--无量纲化

1.无量纲化定义 无量纲化,也称为数据的规范化,是指不同指标之间由于存在量纲不同致其不具可比性,故首先需将指标进行无量纲化,消除量纲影响后再进行接下来的分析。 2.无量纲化方法 无量纲化方法有很多,但是从几何角度来…

多指标综合评价中指标正向化和无量纲化方法的选择

摘要:本文用实例说明了多指标综合评价中,用“倒数逆变换法”进行指标正向化时会完全改变原指标的分布规律,影响综合评价结果的准确性;对三种常用无量纲化方法——极差变换法、标准化法和均值化法的选择使用问题,用实例…

量纲与无量纲,标准化、归一化、正则化

量纲与无量纲,标准化、归一化、正则化 1 量纲与无量纲1.1 量纲1.2 无量纲 2 标准化3 归一化4 正则化5 总结 1 量纲与无量纲 1.1 量纲 量纲我觉得最重要的一句话是:物理量的大小与单位有关。 从这句话我们来思考下最核心的两个单词:大小、单…

数据预处理之数据无量纲化(标准化/归一化)

在进行特征选择之前,一般会先进行数据无量纲化处理,这样,表征不同属性(单位不同)的各特征之间才有可比性,如1cm 与 0.1kg 你怎么比?无量纲处理方法很多,使用不同的方法,对…

无量纲化

参考博客:https://www.zhihu.com/question/29316149 1,无量纲化使不同规格的数据转换到同一规格。 2,常见的无量纲化方法有标准化和区间缩放法。 2.1**标准化**的前提是特征值服从正态分布,标准化后,其转换成标准正态分布。   标准化需要计算特征的…

什么是无量纲化

首先来了解什么是量纲? 量纲和单位的区别,长度,时间,质量等都叫做量纲,而米,千米,秒,分钟,等都是单位, 国际单位制规定了七个基本量纲单位,这七个…

常用的数据无量纲化方法

常用的数据无量纲方法 常用的数据无量纲方法都有什么?1.min-max归一化2.z-score标准化 常用的数据无量纲方法都有什么? 1.min-max归一化 该方法是对原始数据进行线性变换,将其映射到[0,1]之间([-1,1]之间也行)。 d…

数据预处理——无量纲化处理

数据预处理——无量纲化处理 1.无量纲化定义 无量纲化,也称为数据的规范化,是指不同指标之间由于存在量纲不同致其不具可比性,故首先需将指标进行无量纲化,消除量纲影响后再进行接下来的分析。 2.无量纲化方法 无量纲化方法有很…

几种指标无量纲化的方法

统计指标的无量纲化就是将统计指标的实际值转化为评价值。由于统计指标的性质不同,相应地,统计指标实际值转化为评价值的方法也就不同。 一、线性无量纲化方法 如果无量纲化的指标评价值与指标的实际值之间是呈现线性关系的,这种无量纲化方…

Latex公式换行编写

latex在写公式时往往会遇到长公式或者连续等于的情况,这时可以选择公式换行操作: \begin{equation}\begin{aligned}a & bc\\& cb\end{aligned} \end{equation} 得到如下的效果: 其中&是用于标注需要对齐的位置,例如…

Latex 多行公式换行对齐

\begin{equation} \begin{split} x&abc\\ &de\\ &fg \end{split} \end{equation} 效果:

LaTex排版技巧:[15]公式太长如何换行

当我们输入的公式较长时,最容易想到的方法是,在会出现越界的情况,使用强制换行\\,但是这种方法在公式中行不通。 通常,我们行间公式的换行可使用split 环境来实现。如 \[ \begin{split} x & \sqrt {1-y^2}\\ x &am…

LaTex常用技巧5:公式太长换行并加大括号

使用LaTex做笔记的时候发现公式太长,一行会超出页面,于是想到换行。 原来的代码,这里使用了包bm,测试的时候前面请使用\usepackage{bm}。 \begin{equation}_{i}^{G} {\bm{a}}\begin{cases} _{i}^{i-1}\ddot{\bm{p}}, &i1\\_…

Latex 公式太长,换行等号对其

首先一定要插入两个包: \usepackage{amsmath} \usepackage{amssymb} 如果不插入包的话,每次运行到aligned就会报错 然后文章中可如下编译公式: \begin{equation}\label{1} \begin{aligned} a & b c \\ & d e \end{aligned}…

latex如何实现单元格内文字的换行

问题描述 使用latex绘制表格时,有时候会遇到单元格的文字过长,显得很拥挤,适当的换行可以使整体效果更加美观,比如: 源代码为: \resizebox{\textwidth}{!}{\begin{tabular}{cccccccc}\toprule\textbf{Nam…

Latex公式排版(编号、换行、括号内换行、对齐)

最近写论文刚上手了Latex,因为有模板,所以用起来还是很方便的。 但是在实际使用中,由于论文是双栏的,因此比较长的公式在排版时会比较困难。下面对Latex中的公式排版方法做一些记录。 公式的编写方法在此不再赘述。可以选择网页版…

LaTex长公式换行及对齐

长公式换行用\\,对齐用&,宏包\usepackage{amsmath} 示例代码 \begin{equation*}%加*表示不对公式编号 \begin{split} PMV &[0.303*exp(-0.036M)0.0275]*\{M-W-3.05*[5.733-\\ &0.007(M-W)-P_a]-0.42*(M-W-58.2)-0.0173M*\\ &(5.867-P_…