[NLP]文本分类之fastText详解

article/2025/8/26 19:37:20

Word2vec, Fasttext, Glove, Elmo, Bert, Flair pre-train Word Embedding

一、fastText简介

fastText是一个快速文本分类算法,与基于神经网络的分类算法相比有两大优点:
1、fastText在保持高精度的情况下加快了训练速度和测试速度
2、fastText不需要预训练好的词向量,fastText会自己训练词向量
3、fastText两个重要的优化:Hierarchical Softmax、N-gram

fastText是一种Facebook AI Research在16年开源的一个文本分类器。 其特点就是fast。相对于其它文本分类模型,如SVM,Logistic Regression和neural network等模型,fastText在保持分类效果的同时,大大缩短了训练时间。

适合大型数据+高效的训练速度: 能够训练模型“在使用标准多核CPU的情况下10分钟内处理超过10亿个词汇”
支持多语言表达: 利用其语言形态结构,fastText能够被设计用来支持包括英语、德语、西班牙语、法语以及捷克语等多种语言。

FastText的性能要比时下流行的word2vec工具明显好上不少,也比其他目前最先进的词态词汇表征要好。

fastText专注于文本分类,在许多标准问题上实现当下最好的表现(例如文本倾向性分析或标签预测)。

fastText 方法包含三部分:模型架构、层次 Softmax 和 N-gram 特征。

fastText 模型输入一个词的序列(一段文本或者一句话),输出这个词序列属于不同类别的概率。 序列中的词和词组组成特征向量,特征向量通过线性变换映射到中间层,中间层再映射到标签。

fastText 在预测标签时使用了非线性激活函数,但在中间层不使用非线性激活函数。

fastText 模型架构和 Word2Vec 中的 CBOW 模型很类似。不同之处在于,fastText 预测标签,而 CBOW 模型预测中间词。

第一部分:fastText的模型架构

fastText的模型架构类似于CBOW,两种模型都是基于Hierarchical Softmax,都是三层架构:输入层、 隐藏层、输出层。
在这里插入图片描述
CBOW模型又基于N-gram模型和BOW模型,此模型将W(t−N+1)……W(t−1)W(t−N+1)……W(t−1)作为输入,去预测W(t)
fastText的模型则是将整个文本作为特征去预测文本的类别。

第二部分:层次之间的映射

将输入层中的词和词组构成特征向量,再将特征向量通过线性变换映射到隐藏层,隐藏层通过求解最大似然函数,然后根据每个类别的权重和模型参数构建Huffman树,将Huffman树作为输出。
在这里插入图片描述

第三部分:fastText的N-gram特征

常用的特征是词袋模型(将输入数据转化为对应的Bow形式)。但词袋模型不能考虑词之间的顺序,因此 fastText 还加入了 N-gram 特征。
“我 爱 她” 这句话中的词袋模型特征是 “我”,“爱”, “她”。这些特征和句子 “她 爱 我” 的特征是一样的。
如果加入 2-Ngram,第一句话的特征还有 “我-爱” 和 “爱-她”,这两句话 “我 爱 她” 和 “她 爱 我” 就能区别开来了。当然,为了提高效率,我们需要过滤掉低频的 N-gram。
在fastText 中一个低维度向量与每个单词都相关。隐藏表征在不同类别所有分类器中进行共享,使得文本信息在不同类别中能够共同使用。这类表征被称为词袋(bag of words)(此处忽视词序)。在 fastText中也使用向量表征单词 n-gram来将局部词序考虑在内,这对很多文本分类问题来说十分重要。
举例来说:fastText能够学会“男孩”、“女孩”、“男人”、“女人”指代的是特定的性别,并且能够将这些数值存在相关文档中。然后,当某个程序在提出一个用户请求(假设是“我女友现在在儿?”),它能够马上在fastText生成的文档中进行查找并且理解用户想要问的是有关女性的问题。

4、FastText词向量与word2vec对比

FastText= word2vec中 cbow + h-softmax的灵活使用
灵活体现在两个方面:

模型的输出层:word2vec的输出层,对应的是每一个term,计算某term的概率最大;而fasttext的输出层对应的是
分类的label。不过不管输出层对应的是什么内容,起对应的vector都不会被保留和使用;
模型的输入层:word2vec的输入层,是 context window 内的term;而fasttext 对应的整个sentence的内容,包括term,也包括 n-gram的内容;
两者本质的不同,体现在 h-softmax的使用。
Word2vec的目的是得到词向量,该词向量 最终是在输入层得到,输出层对应的 h-softmax 也会生成一系列的向量,但最终都被抛弃,不会使用。
fasttext则充分利用了h-softmax的分类功能,遍历分类树的所有叶节点,找到概率最大的label(一个或者N个)。

改善运算效率——softmax层级

对于有大量类别的数据集,fastText使用了一个分层分类器(而非扁平式架构)。不同的类别被整合进树形结构中(想象下二叉树而非 list)。在某些文本分类任务中类别很多,计算线性分类器的复杂度高。为了改善运行时间,fastText 模型使用了层次 Softmax 技巧。层次 Softmax 技巧建立在哈弗曼编码的基础上,对标签进行编码,能够极大地缩小模型预测目标的数量。
考虑到线性以及多种类别的对数模型,这大大减少了训练复杂性和测试文本分类器的时间。fastText 也利用了类别(class)不均衡这个事实(一些类别出现次数比其他的更多),通过使用 Huffman 算法建立用于表征类别的树形结构。因此,频繁出现类别的树形结构的深度要比不频繁出现类别的树形结构的深度要小,这也使得进一步的计算效率更高。
在这里插入图片描述

FastText词向量优势

(1)适合大型数据+高效的训练速度:能够训练模型“在使用标准多核CPU的情况下10分钟内处理超过10亿个词汇”,特别是与深度模型对比,fastText能将训练时间由数天缩短到几秒钟。使用一个标准多核 CPU,得到了在10分钟内训练完超过10亿词汇量模型的结果。此外, fastText还能在五分钟内将50万个句子分成超过30万个类别。
(2)支持多语言表达:利用其语言形态结构,fastText能够被设计用来支持包括英语、德语、西班牙语、法语以及捷克语等多种语言。它还使用了一种简单高效的纳入子字信息的方式,在用于像捷克语这样词态丰富的语言时,这种方式表现得非常好,这也证明了精心设计的字符 n-gram 特征是丰富词汇表征的重要来源。FastText的性能要比时下流行的word2vec工具明显好上不少,也比其他目前最先进的词态词汇表征要好。
在这里插入图片描述
(3)fastText专注于文本分类,在许多标准问题上实现当下最好的表现(例如文本倾向性分析或标签预测)。FastText与基于深度学习方法的Char-CNN以及VDCNN对比:
在这里插入图片描述
(4)比word2vec更考虑了相似性,比如 fastText 的词嵌入学习能够考虑 english-born 和 british-born 之间有相同的后缀,但 word2vec 却不能

灵活体现在两个方面:

模型的输出层:word2vec的输出层,对应的是每一个term,计算某term的概率最大;而fasttext的输出层对应的是 分类的label。不过不管输出层对应的是什么内容,起对应的vector都不会被保留和使用;
模型的输入层:word2vec的输出层,是 context window 内的term;而fasttext 对应的整个sentence的内容,包括term,也包括 n-gram的内容;
两者本质的不同,体现在 h-softmax的使用。
Wordvec的目的是得到词向量,该词向量 最终是在输入层得到,输出层对应的 h-softmax 也会生成一系列的向量,但最终都被抛弃,不会使用。
fasttext则充分利用了h-softmax的分类功能,遍历分类树的所有叶节点,找到概率最大的label(一个或者N个)


http://chatgpt.dhexx.cn/article/JT6LCIMY.shtml

相关文章

FastText:高效的文本分类工具

❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…

FastText的简单介绍

0、引言 FastText是facebook开源的一款集word2vec、文本分类等一体的机器学习训练工具。在之前的论文中,作者用FastText和char-CNN、deepCNN等主流的深度学习框架,在同样的公开数据集上进行对比测试,在保证准确率稳定的情况下,Fa…

快速文本分类(FastText)

🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎 📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃 🎁欢迎各位→点赞…

FastText:快速的文本分类器

转载请注明作者和出处:http://blog.csdn.net/john_bh/ 一、简介二、FastText原理 2.1 模型架构2.2 层次SoftMax2.3 N-gram特征 三、 基于fastText实现文本分类 3.1 fastText有监督学习分类3.2 fastText有监督学习分类 三、总结 3.1 fastText和word2vec的区别3.2 小…

DCGAN的PyTorch实现

DCGAN 1.什么是GAN GAN是一个框架,让深度模型可以学习到数据的分布,从而通过数据的分布生成新的数据(服从同一分布)。 其由一个判别器和一个生成器构成,生成器负责生成“仿造数据”,判别器负责判断“仿造数据”的质量。两者一起…

GAN论文阅读——DCGAN

论文标题:Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks 论文链接:https://arxiv.org/abs/1511.06434 参考资料:http://blog.csdn.net/liuxiao214/article/details/73500737      …

DCGAN整理总结

DCGAN整理总结 GAN什么是GAN?GAN重要参数及损失函数 DCGAN什么是DCGAN?DCGAN结构TensorFlow版本MINIST手写体生成模型Pytorch版本人脸生成模型 GAN 什么是GAN? GAN是一个教深度学习模型捕捉训练数据的布局来从该布局中生成新数据的框架。最早…

DCGAN论文翻译

UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS (使用DCGAN的无监督表示学习) ABSTRACT(摘要) In recent years, supervised learning with convolutional networks (CNNs) h…

机器学习中的DCGAN-Tensorflow:用于更稳定的训练

https://www.toutiao.com/a6666031263536644621/ 自从Ian Goodfellow的论文以来,GAN已应用于许多领域,但其不稳定性一直存在问题。GAN必须解决极小极大(鞍点)问题,因此这个问题是固有的。 马鞍点的滑稽表示 许多研究人…

DCGAN 源码解析

为什么写Blog现在还没找到理由。不过用心看下去你会觉得更有意义。 我们以生成图片为例子: G就是一个生成图片的网络,它接受一个随机的噪声z,然后通过这个噪声生成图片,生成的数据记做G(z)。D是一个判别网络,判别一张图片是不是…

pytorch搭建DCGAN

我们知道gan的过程是对生成分布拟合真实分布的一个过程,理想目标是让判别器无法识别输入数据到底是来源于生成器生成的数据还是真实的数据。 当然这是一个博弈的过程并且相互促进的过程,其真实的过程在于首先判别器会先拟合真实数据的分布,然…

tensorflow实现DCGAN

1、DCGAN的简单总结 【Paper】 : http://arxiv.org/abs/1511.06434 【github】 : https://github.com/Newmu/dcgan_code theano https://github.com/carpedm20/DCGAN-tensorflow tensorflow https://github.com/jacobgil/keras-dcgan keras https://github.c…

DCGAN TUTORIAL

Introduction 本教程将通过一个示例对DCGAN进行介绍。在向其展示许多真实名人的照片之后,我们将训练一个生成对抗网络(GAN)来产生新名人。此处的大多数代码来自pytorch / examples中的dcgan实现 ,并且本文档将对该实现进行详尽的…

DCGAN原文讲解

DCGAN的全称是Deep Convolution Generative Adversarial Networks(深度卷积生成对抗网络)。是2014年Ian J.Goodfellow 的那篇开创性的GAN论文之后一个新的提出将GAN和卷积网络结合起来,以解决GAN训练不稳定的问题的一篇paper. 关于基本的GAN的原理,可以…

DCGAN

转自:https://blog.csdn.net/liuxiao214/article/details/74502975 首先是各种参考博客、链接等,表示感谢。 1、参考博客1:地址 ——以下,开始正文。 2017/12/12 更新 解决训练不收敛的问题。 更新在最后面部分。 1、DCGAN的…

深度学习之DCGAN

这一此的博客我给大家介绍一下DCGAN的原理以及DCGAN的实战代码,今天我用最简单的语言给大家介绍DCGAN。 相信大家现在对深度学习有了一定的了解,对GAN也有了认识,如果不知道什么是GAN的可以去看我以前的博客,接下来我给大家介绍一下DCGAN的原理。 DCGAN DCGAN的全称是Deep Conv…

对抗神经网络(二)——DCGAN

一、DCGAN介绍 DCGAN即使用卷积网络的对抗网络,其原理和GAN一样,只是把CNN卷积技术用于GAN模式的网络里,G(生成器)网在生成数据时,使用反卷积的重构技术来重构原始图片。D(判别器)网…

对抗生成网络GAN系列——DCGAN简介及人脸图像生成案例

🍊作者简介:秃头小苏,致力于用最通俗的语言描述问题 🍊往期回顾:对抗生成网络GAN系列——GAN原理及手写数字生成小案例 🍊近期目标:写好专栏的每一篇文章 🍊支持小苏:点赞…

DCGAN理论讲解及代码实现

目录 DCGAN理论讲解 DCGAN的改进: DCGAN的设计技巧 DCGAN纯代码实现 导入库 导入数据和归一化 定义生成器 定义鉴别器 初始化和 模型训练 运行结果 DCGAN理论讲解 DCGAN也叫深度卷积生成对抗网络,DCGAN就是将CNN与GAN结合在一起,生…

torch学习 (三十七):DCGAN详解

文章目录 引入1 生成器2 鉴别器3 模型训练:生成器与鉴别器的交互4 参数设置5 数据载入6 完整代码7 部分输出图像示意7.1 真实图像7.2 训练200个批次7.2 训练400个批次7.2 训练600个批次 引入 论文详解:Unsupervised representation learning with deep c…