偏向锁、轻量级锁、重量级锁的区别和解析

article/2025/10/21 13:16:56

为了换取性能,JVM在内置锁上做了非常多的优化,膨胀式的锁分配策略就是其一。理解偏向锁、轻量级锁、重量级锁的要解决的基本问题,几种锁的分配和膨胀过程,有助于编写并优化基于锁的并发程序。

内置锁的分配和膨胀过程较为复杂,限于时间和精力,文中该部分内容是根据网上的多方资料整合而来;仅为方便查阅,后面继续分析JVM源码的时候也有个参考。如果对各级锁已经有了基本了解,读者大可跳过此文。

1 隐藏在内置锁下的基本问题

内置锁是JVM提供的最便捷的线程同步工具,在代码块或方法声明上添加synchronized关键字即可使用内置锁。使用内置锁能够简化并发模型;随着JVM的升级,几乎不需要修改代码,就可以直接享受JVM在内置锁上的优化成果。从简单的重量级锁,到逐渐膨胀的锁分配策略,使用了多种优化手段解决隐藏在内置锁下的基本问题。

1.1 重量级锁

内置锁在Java中被抽象为监视器锁(monitor)。在JDK 1.6之前,监视器锁可以认为直接对应底层操作系统中的互斥量(mutex)。这种同步方式的成本非常高,包括系统调用引起的内核态与用户态切换、线程阻塞造成的线程切换等。因此,后来称这种锁为“重量级锁”。

1.1.1 自旋锁

首先,内核态与用户态的切换上不容易优化。但通过自旋锁,可以减少线程阻塞造成的线程切换(包括挂起线程和恢复线程)。

如果锁的粒度小,那么锁的持有时间比较短(尽管具体的持有时间无法得知,但可以认为,通常有一部分锁能满足上述性质)。那么,对于竞争这些锁的而言,因为锁阻塞造成线程切换的时间与锁持有的时间相当,减少线程阻塞造成的线程切换,能得到较大的性能提升。具体如下:

  • 当前线程竞争锁失败时,打算阻塞自己

  • 不直接阻塞自己,而是自旋(空等待,比如一个空的有限for循环)一会

  • 在自旋的同时重新竞争锁

  • 如果自旋结束前获得了锁,那么锁获取成功;否则,自旋结束后阻塞自己

如果在自旋的时间内,锁就被旧owner释放了,那么当前线程就不需要阻塞自己(也不需要在未来锁释放时恢复),减少了一次线程切换。

“锁的持有时间比较短”这一条件可以放宽。实际上,只要锁竞争的时间比较短(比如线程1快释放锁的时候,线程2才会来竞争锁),就能够提高自旋获得锁的概率。这通常发生在锁持有时间长,但竞争不激烈的场景中。

缺点:

  • 单核处理器上,不存在实际的并行,当前线程不阻塞自己的话,旧owner就不能执行,锁永远不会释放,此时不管自旋多久都是浪费;进而,如果线程多而处理器少,自旋也会造成不少无谓的浪费。

  • 自旋锁要占用CPU,如果是计算密集型任务,这一优化通常得不偿失,减少锁的使用是更好的选择。

  • 如果锁竞争的时间比较长,那么自旋通常不能获得锁,白白浪费了自旋占用的CPU时间。这通常发生在锁持有时间长,且竞争激烈的场景中,此时应主动禁用自旋锁。

使用-XX:-UseSpinning参数关闭自旋锁优化;-XX:PreBlockSpin参数修改默认的自旋次数。

1.1.2 自适应自旋

自适应意味着自旋的时间不再固定了,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定:

  • 如果在同一个锁对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也很有可能再次成功,进而它将允许自旋等待持续相对更长的时间,比如100个循环。

  • 相反的,如果对于某个锁,自旋很少成功获得过,那在以后要获取这个锁时将可能减少自旋时间甚至省略自旋过程,以避免浪费处理器资源。

自适应自旋解决的是“锁竞争时间不确定”的问题

JVM很难感知到确切的锁竞争时间,而交给用户分析就违反了JVM的设计初衷。自适应自旋假定不同线程持有同一个锁对象的时间基本相当,竞争程度趋于稳定,因此,可以根据上一次自旋的时间与结果调整下一次自旋的时间。

缺点:

然而,自适应自旋也没能彻底解决该问题,如果默认的自旋次数设置不合理(过高或过低),那么自适应的过程将很难收敛到合适的值。

1.2 轻量级锁

自旋锁的目标是降低线程切换的成本。如果锁竞争激烈,我们不得不依赖于重量级锁,让竞争失败的线程阻塞;如果完全没有实际的锁竞争,那么申请重量级锁都是浪费的。轻量级锁的目标是,减少无实际竞争情况下,使用重量级锁产生的性能消耗,包括系统调用引起的内核态与用户态切换、线程阻塞造成的线程切换等。

顾名思义,轻量级锁是相对于重量级锁而言的。使用轻量级锁时,不需要申请互斥量,仅仅_将Mark Word中的部分字节CAS更新指向线程栈中的Lock Record,如果更新成功,则轻量级锁获取成功_,记录锁状态为轻量级锁;否则,说明已经有线程获得了轻量级锁,目前发生了锁竞争(不适合继续使用轻量级锁),接下来膨胀为重量级锁

Mark Word是对象头的一部分;每个线程都拥有自己的线程栈(虚拟机栈),记录线程和函数调用的基本信息。二者属于JVM的基础内容,此处不做介绍。

当然,由于轻量级锁天然瞄准不存在锁竞争的场景,如果存在锁竞争但不激烈,仍然可以用自旋锁优化,自旋失败后再膨胀为重量级锁

缺点:

同自旋锁相似:

  • 如果锁竞争激烈,那么轻量级将很快膨胀为重量级锁,那么维持轻量级锁的过程就成了浪费。

1.3 偏向锁

在没有实际竞争的情况下,还能够针对部分场景继续优化。如果不仅仅没有实际竞争,自始至终,使用锁的线程都只有一个,那么,维护轻量级锁都是浪费的。偏向锁的目标是,减少无竞争且只有一个线程使用锁的情况下,使用轻量级锁产生的性能消耗。轻量级锁每次申请、释放锁都至少需要一次CAS,但偏向锁只有初始化时需要一次CAS。

“偏向”的意思是,偏向锁假定将来只有第一个申请锁的线程会使用锁(不会有任何线程再来申请锁),因此,只需要在Mark Word中CAS记录owner(本质上也是更新,但初始值为空),如果记录成功,则偏向锁获取成功,记录锁状态为偏向锁,以后当前线程等于owner就可以零成本的直接获得锁;否则,说明有其他线程竞争,膨胀为轻量级锁

偏向锁无法使用自旋锁优化,因为一旦有其他线程申请锁,就破坏了偏向锁的假定。

缺点:

同样的,如果明显存在其他线程申请锁,那么偏向锁将很快膨胀为轻量级锁。

不过这个副作用已经小的多。
如果需要,使用参数-XX:-UseBiasedLocking禁止偏向锁优化(默认打开)。

1.4 小结

偏向锁、轻量级锁、重量级锁分配和膨胀的详细过程见后。会涉及一些Mark Word与CAS的知识。

偏向锁、轻量级锁、重量级锁适用于不同的并发场景:

  • 偏向锁:无实际竞争,且将来只有第一个申请锁的线程会使用锁。

  • 轻量级锁:无实际竞争,多个线程交替使用锁;允许短时间的锁竞争。

  • 重量级锁:有实际竞争,且锁竞争时间长。

另外,如果锁竞争时间短,可以使用自旋锁进一步优化轻量级锁、重量级锁的性能,减少线程切换。

如果锁竞争程度逐渐提高(缓慢),那么从偏向锁逐步膨胀到重量锁,能够提高系统的整体性能。

2 锁分配和膨胀过程

重申,这部分主要是根据网上的多方资料整理。核心是这位 巨巨整理的流程图,相当详细,基本符合逻辑。

前面讲述了内置锁在使用过程中的一些基本问题和解决方案,实现原理一笔带过。详细的锁分配和膨胀过程如下:

图中有一处疑问:
按照图中流程, 如果发现锁已经膨胀为重量级锁,就直接使用互斥量mutex阻塞当前线程
然而,自旋锁的一大好处就是减少线程切换的开销。在这里没有必要直接阻塞当前线程,大可以像轻量级锁一样,自旋一会,失败了再阻塞。

特别说明两点:

  • CAS记录owner时,expected == null,newValue == ownerThreadId,因此,只有第一个申请偏向锁的线程能够返回成功,后续线程都必然失败(部分线程检测到可偏向,同时尝试CAS记录owner)。

  • 内置锁只能沿着偏向锁、轻量级锁、重量级锁的顺序逐渐膨胀,不能“收缩”。这基于JVM的另一个假定,“一旦破坏了上一级锁的假定,就认为该假定以后也必不成立”。

另外,当重量级锁被解除后,需要唤醒一个被阻塞的线程,这部分逻辑与ReentrantLock基本相同

简化上图显示:


http://chatgpt.dhexx.cn/article/BGvZxRa9.shtml

相关文章

偏向锁是什么

偏向锁操作流程偏向锁,顾名思义,它会偏向于第一个访问锁的线程,如果在接下来的运行过程中,该锁没有被其他的线程访问,则持有偏向锁的线程将永远不需要触发同步 但是从我们跑的代码输出却看不到偏向锁这个东东。为啥对…

偏向锁的基本原理

偏向锁的基本原理 前面说过,大部分情况下,锁不仅仅不存在多线程竞争,而是总是由同一个线程多次获得,为了让线程获取锁的代价更低就引入了偏向锁的概念。怎么理解偏向锁呢?当一个线程访问加了同步锁的代码块时&#xff…

偏向锁,轻量级锁,重量级锁的核心原理

前言:大家好,我是小威,24届毕业生,在一家满意的公司实习。本篇文章是关于并发编程中偏向锁,轻量级锁,重量级锁的核心原理知识记录。 本篇文章记录的基础知识,适合在学Java的小白,也适…

深入探究synchronize锁机制

synchronized 有三种方式来加锁,分别是: **1. 修饰实例方法:**作用于当前实例加锁,进入同步代码前要获得当前实例的锁 **2. 静态方法:**作用于当前类加锁,进入同步代码前要获得当前类的锁 **3. 修饰代码块&…

偏向锁的原理与实战

文章目录 1. 偏向锁的核心原理2. 偏向锁代码演示3. 偏向锁的膨胀与撤销 1. 偏向锁的核心原理 如果不存在线程竞争的一个线程获得了锁,那么锁就进入偏向状态,此时Mark Word的结构变为偏向锁结构,锁对象的锁标志位(lock)…

Java并发 | 19.[锁机制] 偏向锁(CAS)

文章目录 1. 偏向锁分析回顾轻量级锁偏向锁的优势 2. 偏向锁(CAS)2.1. 偏向锁流程概述2.2. 锁升级 参考资料 1. 偏向锁分析 回顾轻量级锁 在上文 Java并发 | 18.[锁机制] 轻量级锁(CAS自旋锁)中对轻量级锁进行过解析&#xff0c…

Synchronized-偏向锁

偏向锁是什么? 是jdk1.6引入的一种锁优化方式。让 锁对象 偏心于第一次获取锁的线程,记住它的id,当下一次再有线程获取锁的时候,与记录的ID匹配,直接获取锁就行。是一种load-and-test的过程。 引入目的? …

面试题-- 什么是偏向锁

所谓的偏向,就是偏心,即锁会偏向于当前已经占有锁的线程 。 大部分情况是没有竞争的(某个同步块大多数情况都不会出现多线程同时竞争锁),所以可以通过偏向来提高性能。即在无竞争时,之前获得锁的线程再次获…

Java中的偏向锁,轻量级锁, 重量级锁解析

文章目录 参考文章Java 中的锁一些先修知识synchronized 关键字之锁的升级(偏向锁->轻量级锁->重量级锁)无锁 -> 偏向锁偏向锁的撤销(Revoke)偏向锁的批量再偏向(Bulk Rebias)机制偏向锁 -> 轻…

条件分布

1.离散型: 例1: 2.连续型:

关于多元正态分布的条件分布的证明

之前在机器学习 cs229学习笔记3 (EM alogrithm,Mixture of Gaussians revisited & Factor analysis )中直接给出了多元正态分布的条件概率 正好今天上课讲了多元正态分布的内容,但没有涉及条件概率,所以下来baidu了一下,找到一个不错的pp…

条件分布函数(离散-条件分布律)

一、离散随机变量的条件分布函数 1.0、条件分布函数定义 1.1、例 1.1.1、例1 1.1.2、例2 二、连续型随机变量的条件分布函数 2.1、连续随机变量的条件分布函数 2.2、条件概率密度函数

第三章 多维随机变量及其分布 3.3 条件分布

第三章 多维随机变量及其分布 3.3 条件分布 文章目录 第三章 多维随机变量及其分布 3.3 条件分布离散型随机变量的条件分布连续型随机变量的条件分布 离散型随机变量的条件分布 例: 求: 离散型的直接套条件概率的公式就行了。 连续型随机变量的条件分布…

~《概率论》~条件分布

《概率论》条件分布 文章目录 ~《概率论》~条件分布一、离散型随机向量的条件分布1.1、定义1.2、性质 二、连续型随机向量的条件分布2.1、定义2.2、性质 一、离散型随机向量的条件分布 1.1、定义 1.2、性质 二、连续型随机向量的条件分布 2.1、定义 2.2、性质

MCMC算法--Gibbs采样2:多元高斯分布的边际分布与条件分布推导

因为在下篇博客中会介绍Gibbs采样,代码示例用到的是多元高斯分布,所以对条件分布,边际分布公式必须写出来,所以博主整理了下。 参考文献为:http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html 由…

条件高斯分布

多元高斯分布的一个重要性质是如果两个变量集是联合高斯分布,那么其中一个基于另一个变量集上的条件分布仍然是高斯分布。边缘高斯分布也有类似结论。 考虑第一种情形的条件高斯分布。假设 X 是一个满足高斯分布 的 D 维向量,我们把 X 分作两个子集 Xa 和…

【概率论】3-6:条件分布(Conditional Distributions Part I)

原文地址1:https://www.face2ai.com/Math-Probability-3-6-Conditional-Distributions-P1转载请标明出处 Abstract: 首先介绍随机变量的条件分布,随后介绍随机变量条件分布下的乘法法则,贝叶斯公式和全概率公式 Keywords: Discrete Conditio…

概率论与数理统计(3.3)二维随机变量条件分布

这个条件分布主要只针对二维的 一、离散型随机变量的条件分布 同理固定一个X为一个常数则可得Y的条件分布律 **注:**离散型的求在什么条件下X或Y的条件分布律,知道他们的联合分布律很重要. 1) 观察这个公式。 注:必须知道P{X1}的…

多元正态分布条件分布公式总结

假设X是有两个随机向量组成 其中 假设X服从多元高斯分布其中 多元正态分布