林軒田《机器学习基石》课程总结

article/2025/11/7 0:22:00

最近发布了一系列台湾大学资讯工程系林軒田(Hsuan-Tien Lin)教授开设的《机器学习基石》的课程总结,分为4个部分,点击标题可查看:

  1. 机器什么时候能够学习?(When Can Machines Learn?)
  2. 机器为什么能够学习?(Why Can Machines Learn?)
  3. 机器怎样学习?(How Can Machines Learn?)
  4. 机器怎样可以学得更好?(How Can Machines Learn Better?)

1 “3”的魔力

整个课程中,“3”这个数字贯穿始终。比如在介绍机器学习时,介绍了它和3个相关领域(数据挖掘、人工智能、统计学)的区别与联系:

在说明可学习性理论时,讲了机器学习的3个理论边界

课程介绍了3种线性模型(PLA/Pocket、线性回归、逻辑回归):

还介绍了3种关键工具(特征变换、正则化、验证):

以及3个学习原则(奥卡姆剃刀、抽样偏差、数据窥探):

在未来的《机器学习技法》课程中,还会从3个方面(更多特征变换、更多正则化、更少标签)进行扩展,进而引出一系列的模型:

2 课程回顾

以下是每一节课的回顾。


http://chatgpt.dhexx.cn/article/7Ox8Dr3V.shtml

相关文章

台大林轩田《机器学习基石》:作业三python实现

台大林轩田《机器学习基石》:作业一python实现 台大林轩田《机器学习基石》:作业二python实现 台大林轩田《机器学习基石》:作业三python实现 台大林轩田《机器学习基石》:作业四python实现 完整代码: https://github…

机器学习基石系列三

课程关联与可学习 核心问题 上界限制 增长上限 上界证明(不太懂) - step three

林轩田 《机器学习基石》学习笔记

参考资料: 除了redstone的笔记较好之外,还有豆瓣的https://www.douban.com/doulist/3381853/的笔记也比较好 -------------------------------------- 1. 什么时候机器可以学习? 2. 为什么要要使用机器学习? 3. 机器怎么可以学习到…

【机器学习】机器学习基石-林轩田-1-机器学习介绍

机器学习基石-1-机器学习介绍 本节内容What is Machine Learning?What is skill?Why use machine learning?When use machine learning?Key Essence of Machine LearningFun TimeApplications of Machine LearningComponents of Machine Learning相关术语Leanin…

机器学习基石 作业0

机器学习基石 作业0 1 Probability and Statistics2 Linear Algebra3 Caculus网上没找到作业0的答案,这是自己做的版本,有一些可能会有错误,欢迎讨论。 1 Probability and Statistics 用数学归纳法。N=1时满足,假定N=n满足,当N=n+1同样满足。得证。 10个挑4个正面 C 10 4…

机器学习基石 作业三

机器学习基石 作业三 代入计算 线性回归得到的映射函数 H H H的性质问题。显然映射多次与映射一次效果一样。其它的可以根据 H H H的性质,秩为d+1,显然不可逆。特征值的部分不是非常清楚,大概是根据 I − H I-H I−H的迹等于 N − ( d + 1 ) N-(d+1) N−(d+1)得到的。3. PLA…

机器学习基石笔记

文章目录 一. 机器学习什么时候用二. 机器学习的基本流程三. 什么是机器学习四. 机器学习的可行性NFL定理从统计学中找到可行的方法统计学与机器学习产生联系 一. 机器学习什么时候用 事物本身存在某种潜在规律某些问题难以使用普通编程解决有大量的数据样本可供使用 二. 机器…

机器学习基石 作业二

机器学习基石 作业二 1 计算一下本来预测对与预测错时加上噪音导致的错误率然后相加即可。 2 选择一个 λ \lambda λ的值让 μ \mu μ的系数为0。 3 根据VC bound 公式带入计算即可,N=46000的时候error最接近0.05。下面的代码可以计算不同的N与目标error之间的差距。 def …

机器学习基石2-Learning to Answer Yes-No

注: 文章中所有的图片均来自台湾大学林轩田《机器学习基石》课程。 笔记原作者:红色石头 微信公众号:AI有道 上节课,简述了机器学习的定义及其重要性,并用流程图的形式介绍了机器学习的整个过程:根据模型\(…

机器学习基石-林轩田-第一周笔记

Lecture 01 - The Learning Problem When Can Machine Learn ?Why Can Machine Learn ?How Can Machine Learn ?How Can Machine Learn Better ? What is Machine Learning 什么是“学习”?学习就是人类通过观察、积累经验,掌握某项技能或能力。就…

机器学习基石16:三个重要原则(Three Learning Principles)

本节介绍了机器学习中三个重要原则,包括奥卡姆剃刀原理,样本偏差,数据窥探;并对16课程所学知识进行了总结。 系列文章 机器学习基石01:机器学习简介 机器学习基石02:感知器算法(Perceptron Alg…

机器学习基石1(ML基本概念和VC dimension)

文章目录 一、什么是机器学习?二、什么时候可以使用机器学习?三、感知机perceptron四、机器学习的输入形式五、机器真的可以学习吗?六、vc dimension 一、什么是机器学习? 其实第一个问题和第二个问题是穿插到一块儿回答的,首先机器学习要解决的是常规…

Wireshark抓包数据

首先官网下载Wireshark,下载好后,用浏览器打开桂林生活网,无需注册,输入账号密码。 打开Wireshark,用命令提示符查看本机ip 在Wireshark的过滤搜索中输入ip10.34.152.44,找到http类型的数据查看&#xff0…

Wireshark抓包数据分析

文章目录 准备数据链路层实作一 熟悉 Ethernet 帧结构实作二 了解子网内/外通信时的 MAC 地址实作三 掌握 ARP 解析过程 网络层实作一 熟悉 IP 包结构实作二 IP 包的分段与重组实作三 考察 TTL 事件 传输层实作一 熟悉 TCP 和 UDP 段结构实作二 分析 TCP 建立和释放连接 应用层…

网络数据包分析与抓取

多年的网络数据包分析与抓取经验,闲话少说,上干货。先列举数据包的种类:1、Http数据包;2、UDP数据包;3、TCP数据包;4、ARP数据包;其实数据包的概念是很泛的,在软件可逆领域&#xff…

如何进行数据的抓包

抓包 抓包就是对网络传输中发送与接收的数据包进行截获、重发、编辑、转存等操作。 前提:抓取的数据包是从网卡设备中进行抓取的; win wiresharkLinux tcpdump命令 从上图我们就可以了解到tcpdump就是我们使用的一个工具; 我们在使用它时有…

WireShark基本抓包数据分析

WireShark抓包数据分析: 1、TCP报文格式 源端口、目的端口:16位长。标识出远端和本地的端口号。 顺序号:32位长。表明了发送的数据报的顺序。 确认号:32位长。希望收到的下一个数据报的序列号。 TCP协议数据报头DE 头长&#xff…

网络抓包及分析

今天我们主要来讲一下网络抓包的教程,我们用WireShark来说明 我们先说明下抓包工具界面 我们现在本地机子上用上面两个比较多 上面是抓无线网卡,就是你访问外网的包 下面是抓环回地址 ,就是你访问127.0.0.1或localhost的包 我们抓上面WLAN…

Wireshark数据抓包分析之UDP协议

目录 预备知识1.UDP协议概述2.什么是UDP协议3.UDP协议的特点 实验目的实验环境实验步骤一1.配置TCP&UDP测试工具2.配置服务器端3.配置客户端4.获取UDP数据包 实验步骤二1.UDP首部格式2.分析UDP数据包 预备知识 1.UDP协议概述 UDP是User Datagram Protocol(用户…

常见的几种网络抓包及协议分析工具

常见的几种网络抓包及协议分析工具 引言 网络工程师必备技能-抓取网络数据。 在本篇博客中,我们将集中记下几个问题进行探讨: 如何抓取电脑本机发送/接收的网络数据?如何在主机 A 上抓取 主机 B 上的网络数据?如何使用第三方设…