鸢尾花数据集分类

article/2025/11/10 21:58:16
  1. 数据集介绍 共有数据150组,每组包括花萼长、花萼宽、花瓣长、花瓣宽4个输入特征。 同时给出了,这一组特征对应的鸢尾花类别。类别包括Setosa Iris(狗尾草 鸢尾),Versicolour Iris(杂色鸢尾),Virginica Iris(弗吉尼亚鸢尾)三 类,分别用数字0,1,2表示。

  1. 手动实现前向传播、反向传播,可视化loss曲线

可视化整个训练过程,对应于理论学习的步骤

# -*- coding: UTF-8 -*-
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)  # 120/32+1 = 4,分为4个批次
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
# print(list(train_db.as_numpy_iterator()))# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和# 训练部分
for epoch in range(epoch):  #数据集级别的循环,每个epoch循环一次数据集for step, (x_train, y_train) in enumerate(train_db):  #batch级别的循环 ,每个step循环一个batchwith tf.GradientTape() as tape:  # with结构记录梯度信息y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracyloss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确# 计算loss对各个参数的梯度grads = tape.gradient(loss, [w1, b1])# 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_gradw1.assign_sub(lr * grads[0])  # 参数w1自更新b1.assign_sub(lr * grads[1])  # 参数b自更新# 每个epoch,打印loss信息print("w1:", w1)print("b1:", b1)print("Epoch {}, loss: {}".format(epoch, loss_all/4))train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中?loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备# 测试部分# total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0total_correct, total_number = 0, 0for x_test, y_test in test_db:# 使用更新后的参数进行预测y = tf.matmul(x_test, w1) + b1y = tf.nn.softmax(y)pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类# 将pred转换为y_test的数据类型pred = tf.cast(pred, dtype=y_test.dtype)# 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)# 将每个batch的correct数加起来correct = tf.reduce_sum(correct)# 将所有batch中的correct数加起来total_correct += int(correct)# total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数total_number += x_test.shape[0]# 总的准确率等于total_correct/total_numberacc = total_correct / total_numbertest_acc.append(acc)print("Test_acc:", acc)print("--------------------------")# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像# 绘制 Accuracy 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()

  1. 利用sklearn封装的函数进行训练

import tensorflow as tf
from sklearn import datasets
import numpy as npx_train = datasets.load_iris().data
y_train = datasets.load_iris().targetnp.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)model = tf.keras.models.Sequential([tf.keras.layers.Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
])model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),metrics=['sparse_categorical_accuracy'])model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)model.summary()


http://chatgpt.dhexx.cn/article/6slfYKkh.shtml

相关文章

鸢尾花数据集分类-决策树

文章目录 决策树数据集代码实验分析 决策树 决策树(Decision Tree)是一种基本的分类与回归方法,当决策树用于分类时称为分类树,用于回归时称为回归树。主要介绍分类树。 决策树由结点和有向边组成。结点有两种类型:内…

鸢尾花数据集的各种玩法

目录 鸢尾花数据集下载鸢尾花数据集iris csv文件下载数据集 Pandas访问csv数据集 Pandas库Pandas二维数据基本操作 读取csv数据集文件设置列标题names参数 访问数据显示统计信息DataFrame的常用属性:ndim、size、shape转化为NumPy数组 访问数组元素–索引和切片 鸢…

iris鸢尾花数据集最全数据分析

写在前面 在写这篇文章之前,首先安利下jupyter,简直是神作,既可以用来写文章,又可以用来写代码,文章和代码并存,简直就是写代码/文章/教程的利器。 安装很简单:pip install jupyter 使用很简单…

sklearn数据集——iris鸢尾花数据集

参考书籍:Python机器学习基础教程 1、初始数据 鸢尾花(Iris)数据集,是机器学习和统计学中一个经典的数据集。它包含在 scikit-learn 的 datasets 模块中。 我们可以调用 load_iris 函数来加载数据: from sklearn.da…

重拾Iris鸢尾花数据集分析

最近我又又又开始了我的机器学习道路,并且回过头来重新看了一遍Iris数据分析,作为机器学习里面最经典的案例之一,鸢尾花既是我入门机器学习到放弃的地方,又是再次细读之后给予我灵感的地方。 下面介绍一下这次灵感之旅&am…

Python-鸢尾花数据集Iris 数据可视化 :读取数据、显示数据、描述性统计、散点图、直方图、KDE图、箱线图

本博客运行环境为Jupyter Notebook、Python3。使用的数据集是鸢尾花数据集(Iris)。主要叙述的是数据可视化。 IRIS数据集以鸢尾花的特征作为数据来源,数据集包含150个数据集,有4维,分为3 类,每类50个数据&a…

《机器学习》分析鸢尾花数据集

转载地址:https://www.cnblogs.com/mandy-study/p/7941365.html 分析鸢尾花数据集 下面将结合Scikit-learn官网的逻辑回归模型分析鸢尾花示例,给大家进行详细讲解及拓展。由于该数据集分类标签划分为3类(0类、1类、2类)&#xff…

笔记篇二:鸢尾花数据集分类

目录 一、鸢尾花数据集 二、逻辑回归分析 三、逻辑回归实现鸢尾花数据集分类 四、散点图绘制 一、鸢尾花数据集 1、问题 Iris 鸢尾花数据集是一个经典数据集,在统计学习和机器学习领域都经常被用作示例。数据集内包含 3 类共 150 条记录,每类各 5…

IRIS鸢尾花数据集(多种格式)-下载地址

最近看的例子有用到IRIS数据集, 个人找了半天,才找到合适格式的数据集。 因此,将我找到的数据集分享给大家,以免大家像我一样找很久。 我这里有3种格式的数据集,分别是: 1. iris.csv 2. Iris.data 3.…

鸢尾花数据集基本用法

Iris鸢尾花数据集是一个经典的数据集。 包含3类共150条记录,每类各50项数据,每一条记录都有四个体征。 可以通过这四个特征来预测鸢尾花属于哪一个品种。 一.鸢尾花数据集 首先导入数据集,用pandas读入iris.csv数据集,读取后的…

鸢尾花(iris)数据集分析

原文链接:https://www.jianshu.com/p/52b86c774b0b Iris 鸢尾花数据集是一个经典数据集,在统计学习和机器学习领域都经常被用作示例。数据集内包含 3 类共 150 条记录,每类各 50 个数据,每条记录都有 4 项特征:花萼长度…

鸢尾花(iris)数据集

鸢尾花(iris)数据集 更新时间:2021-03-21 01:01:09标签:数据集 鸢尾花 说明 机器学习教程 正在计划编写中,欢迎大家加微信 sinbam 提供意见、建议、纠错、催更。 鸢【音:yuān】尾花(Iris&a…

数据分析——鸢尾花数据集

鸢尾花数据集 Iris 鸢尾花数据集内包含 3 类分别为山鸢尾(Iris-setosa)、变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica),共 150 条记录,每类各 50 个数据,每…

机器学习--鸢尾花数据集实战

Iris数据集实战 本次主要围绕Iris数据集进行一个简单的数据分析, 另外在数据的可视化部分进行了重点介绍. 环境 win8, python3.7, jupyter notebook 目录 1. 项目背景 2. 数据概览 3. 特征工程 4. 构建模型 正文 1. 项目背景 鸢尾属(拉丁学名:Iris L.), …

sklearn基础篇(三)-- 鸢尾花(iris)数据集分析和分类

后面对Sklearn的学习主要以《Python机器学习基础教程》和《机器学习实战基于scikit-learn和tensorflow》,两本互为补充进行学习,下面是开篇的学习内容。 1 初识数据 iris数据集的中文名是安德森鸢尾花卉数据集,英文全称是Anderson’s Iris d…

机器学习——鸢尾花数据集

机器学习——鸢尾花数据集 数据集简介导入数据集可视化主成分分析 鸢尾花数据集即iris iris数据集文件: https://pan.baidu.com/s/1saL_4Q9PbFJluU4htAgFdQ .提取码:1234 数据集简介 数据集包含150个样本(数据集的行)数据集包含…

实验一:鸢尾花数据集分类

实验一:鸢尾花数据集分类 一、问题描述 利用机器学习算法构建模型,根据鸢尾花的花萼和花瓣大小,区分鸢尾花的品种。实现一个基础的三分类问题。 二、数据集分析 Iris 鸢尾花数据集内包含 3 种类别,分别为山鸢尾(Iris…

C++优化之使用emplace

在C开发过程中,我们经常会用STL的各种容器,比如vector,map,set等,这些容器极大的方便了我们的开发。在使用这些容器的过程中,我们会大量用到的操作就是插入操作,比如vector的push_back&#xff…

C++ emplace_back

概述 在C11中,在引入右值的升级后,调用push_back变的更为高效,原本需要调用构造函数构造这个临时对象,然后调用拷贝构造函数将这个临时对象放入容器中。在C11升级后,只需要调用构造函数,然后调用移动拷贝函…

list容器下的 emplace_front() splice() 函数

目录 emplace_front()splice()作者的坑时间复杂度注意点:疑惑处 emplace_front() emplace中文为安置,那么这个函数就是安置到什么什么前面。 void emplace_front(value_type val) ;时间复杂度:O(1) splice() splice译为粘接,作用…