数据结构之深度优先和广度优先遍历

article/2025/9/17 4:29:40

文章目录

    • 为什么要有图
    • 图的常用概念
    • 邻接矩阵
    • 邻接表
    • 图的深度优先遍历
      • 深度优先遍历基本思想
      • 深度优先遍历算法步骤
      • 深度优先算法的代码实现
    • 图的广度优先遍历
      • 广度优先遍历基本思想
      • 广度优先遍历算法步骤
      • 广度优先算法的代码实现
      • 图结构完整代码

为什么要有图

1)前面我们学了线性表和树

2)线性表局限于一个直接前驱和一个直接后继的关系

3)树也只能有一个直接前驱也就是父节点

4)当我们需要表示多对多的关系时,这里我们就用到了图。

图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。结点也可以称为顶点

图的常用概念

1)顶点(vertex) 2)边(edge) 3)路径 4)无向图
在这里插入图片描述

5)有向图 6)带权图
在这里插入图片描述

图的表示方式

图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。

邻接矩阵

邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是的row和col表示的是1…n个点。

在这里插入图片描述

邻接表

1)邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失.

2)邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成

3)举例说明

在这里插入图片描述

图的深度优先遍历

图遍历介绍

所谓图的遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略:

(1)深度优先遍历

(2)广度优先遍历

深度优先遍历基本思想

图的深度优先搜索(DepthFirstSearch)。

1)深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点,可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。

2)我们可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。

3)显然,深度优先搜索是一个递归的过程

深度优先遍历算法步骤

1)访问初始结点v,并标记结点v为已访问。

2)查找结点v的第一个邻接结点w。

3)若w存在,则继续执行4,如果w不存在,则回到第1步,将从v的下一个结点继续。

4)若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。

5)查找结点v的w邻接结点的下一个邻接结点,转到步骤3。

深度优先算法的代码实现

	//深度优先遍历算法//i 第一次就是 0private void dfs(boolean[] isVisited, int i) {//首先我们访问该结点,输出System.out.print(getValueByIndex(i) + "->");//将结点设置为已经访问isVisited[i] = true;//查找结点i的第一个邻接结点wint w = getFirstNeighbor(i);while(w != -1) {//说明有if(!isVisited[w]) {dfs(isVisited, w);}//如果w结点已经被访问过w = getNextNeighbor(i, w);}}//对dfs 进行一个重载, 遍历我们所有的结点,并进行 dfspublic void dfs() {isVisited = new boolean[vertexList.size()];//遍历所有的结点,进行dfs[回溯]for(int i = 0; i < getNumOfVertex(); i++) {if(!isVisited[i]) {dfs(isVisited, i);}}}

图的广度优先遍历

广度优先遍历基本思想

1)图的广度优先搜索(BroadFirstSearch)。

2)类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点

广度优先遍历算法步骤

1)访问初始结点v并标记结点v为已访问。

    2)结点v入队列 3)当队列非空时,继续执行,否则算法结束。4)出队列,取得队头结点u。5)查找结点u的第一个邻接结点w。6)若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:​		6.1若结点w尚未被访问,则访问结点w并标记为已访问。​		6.2结点w入队列​		6.3查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。

广度优先算法的代码实现

	private void bfs(boolean[] isVisited, int i) {int u ; // 表示队列的头结点对应下标int w ; // 邻接结点w//队列,记录结点访问的顺序LinkedList queue = new LinkedList();//访问结点,输出结点信息System.out.print(getValueByIndex(i) + "=>");//标记为已访问isVisited[i] = true;//将结点加入队列queue.addLast(i);while( !queue.isEmpty()) {//取出队列的头结点下标u = (Integer)queue.removeFirst();//得到第一个邻接结点的下标 w w = getFirstNeighbor(u);while(w != -1) {//找到//是否访问过if(!isVisited[w]) {System.out.print(getValueByIndex(w) + "=>");//标记已经访问isVisited[w] = true;//入队queue.addLast(w);}//以u为前驱点,找w后面的下一个邻结点w = getNextNeighbor(u, w); //体现出我们的广度优先}}} //遍历所有的结点,都进行广度优先搜索public void bfs() {isVisited = new boolean[vertexList.size()];for(int i = 0; i < getNumOfVertex(); i++) {if(!isVisited[i]) {bfs(isVisited, i);}}}

图结构完整代码

package com.atguigu.graph;import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;public class Graph {private ArrayList<String> vertexList; //存储顶点集合private int[][] edges; //存储图对应的邻结矩阵private int numOfEdges; //表示边的数目//定义给数组boolean[], 记录某个结点是否被访问private boolean[] isVisited;public static void main(String[] args) {//测试一把图是否创建okint n = 8;  //结点的个数//String Vertexs[] = {"A", "B", "C", "D", "E"};String Vertexs[] = {"1", "2", "3", "4", "5", "6", "7", "8"};//创建图对象Graph graph = new Graph(n);//循环的添加顶点for(String vertex: Vertexs) {graph.insertVertex(vertex);}//添加边//A-B A-C B-C B-D B-E 
//		graph.insertEdge(0, 1, 1); // A-B
//		graph.insertEdge(0, 2, 1); // 
//		graph.insertEdge(1, 2, 1); // 
//		graph.insertEdge(1, 3, 1); // 
//		graph.insertEdge(1, 4, 1); // //更新边的关系graph.insertEdge(0, 1, 1);graph.insertEdge(0, 2, 1);graph.insertEdge(1, 3, 1);graph.insertEdge(1, 4, 1);graph.insertEdge(3, 7, 1);graph.insertEdge(4, 7, 1);graph.insertEdge(2, 5, 1);graph.insertEdge(2, 6, 1);graph.insertEdge(5, 6, 1);//显示一把邻结矩阵graph.showGraph();//测试一把,我们的dfs遍历是否okSystem.out.println("深度遍历");graph.dfs(); // A->B->C->D->E [1->2->4->8->5->3->6->7]
//		System.out.println();System.out.println("广度优先!");graph.bfs(); // A->B->C->D-E [1->2->3->4->5->6->7->8]}//构造器public Graph(int n) {//初始化矩阵和vertexListedges = new int[n][n];vertexList = new ArrayList<String>(n);numOfEdges = 0;}//得到第一个邻接结点的下标 w /*** * @param index * @return 如果存在就返回对应的下标,否则返回-1*/public int getFirstNeighbor(int index) {for(int j = 0; j < vertexList.size(); j++) {if(edges[index][j] > 0) {return j;}}return -1;}//根据前一个邻接结点的下标来获取下一个邻接结点public int getNextNeighbor(int v1, int v2) {for(int j = v2 + 1; j < vertexList.size(); j++) {if(edges[v1][j] > 0) {return j;}}return -1;}//深度优先遍历算法//i 第一次就是 0private void dfs(boolean[] isVisited, int i) {//首先我们访问该结点,输出System.out.print(getValueByIndex(i) + "->");//将结点设置为已经访问isVisited[i] = true;//查找结点i的第一个邻接结点wint w = getFirstNeighbor(i);while(w != -1) {//说明有if(!isVisited[w]) {dfs(isVisited, w);}//如果w结点已经被访问过w = getNextNeighbor(i, w);}}//对dfs 进行一个重载, 遍历我们所有的结点,并进行 dfspublic void dfs() {isVisited = new boolean[vertexList.size()];//遍历所有的结点,进行dfs[回溯]for(int i = 0; i < getNumOfVertex(); i++) {if(!isVisited[i]) {dfs(isVisited, i);}}}//对一个结点进行广度优先遍历的方法private void bfs(boolean[] isVisited, int i) {int u ; // 表示队列的头结点对应下标int w ; // 邻接结点w//队列,记录结点访问的顺序LinkedList queue = new LinkedList();//访问结点,输出结点信息System.out.print(getValueByIndex(i) + "=>");//标记为已访问isVisited[i] = true;//将结点加入队列queue.addLast(i);while( !queue.isEmpty()) {//取出队列的头结点下标u = (Integer)queue.removeFirst();//得到第一个邻接结点的下标 w w = getFirstNeighbor(u);while(w != -1) {//找到//是否访问过if(!isVisited[w]) {System.out.print(getValueByIndex(w) + "=>");//标记已经访问isVisited[w] = true;//入队queue.addLast(w);}//以u为前驱点,找w后面的下一个邻结点w = getNextNeighbor(u, w); //体现出我们的广度优先}}} //遍历所有的结点,都进行广度优先搜索public void bfs() {isVisited = new boolean[vertexList.size()];for(int i = 0; i < getNumOfVertex(); i++) {if(!isVisited[i]) {bfs(isVisited, i);}}}//图中常用的方法//返回结点的个数public int getNumOfVertex() {return vertexList.size();}//显示图对应的矩阵public void showGraph() {for(int[] link : edges) {System.err.println(Arrays.toString(link));}}//得到边的数目public int getNumOfEdges() {return numOfEdges;}//返回结点i(下标)对应的数据 0->"A" 1->"B" 2->"C"public String getValueByIndex(int i) {return vertexList.get(i);}//返回v1和v2的权值public int getWeight(int v1, int v2) {return edges[v1][v2];}//插入结点public void insertVertex(String vertex) {vertexList.add(vertex);}//添加边/*** * @param v1 表示点的下标即使第几个顶点  "A"-"B" "A"->0 "B"->1* @param v2 第二个顶点对应的下标* @param weight 表示 */public void insertEdge(int v1, int v2, int weight) {edges[v1][v2] = weight;edges[v2][v1] = weight;numOfEdges++;}
}

http://chatgpt.dhexx.cn/article/5Dyve84F.shtml

相关文章

图的深度优先和广度优先遍历算法

编写一个程序&#xff0c;输出下面带权有向图的邻接表&#xff0c;并根据该邻接表&#xff0c;实现图的遍历运算&#xff0c;具体要求如下&#xff1a; (1)从顶点0开始的深度优先遍历序列(递归算法) (2)从顶点0开始的深度优先遍历序列(非递归算法) (3)从顶点0开始的广度优先遍历…

算法之深度优先、广度优先算法

目录 前言&#xff1a; 搜索算法&#xff1a; 广度优先搜索算法 深度优先搜索算法 问题&#xff1a;如何找出社交网络中某个用户的三度好友关系&#xff1f; 总结&#xff1a; 参考资料&#xff1a; 前言&#xff1a; 图这种数据结构经常用于表示一个社交网络&#x…

广度优先搜索与深度优先搜索

广度优先搜索&#xff08;宽度优先搜索&#xff0c;BFS&#xff09;和深度优先搜索&#xff08;DFS&#xff09;算法的应用非常广泛&#xff0c;本篇文章主要介绍BFS与DFS的原理、实现和应用。 深度优先搜索 图的深度优先搜索(Depth First Search)&#xff0c;和树的先序遍历…

深度优先遍历与广度优先遍历

1、深度优先遍历(Depth First Search, 简称 DFS) 1.1、主要思路 从图中一个未访问的顶点 V 开始&#xff0c;沿着一条路一直走到底&#xff0c;然后从这条路尽头的节点回退到上一个节点&#xff0c;再从另一条路开始走到底…&#xff0c;不断递归重复此过程&#xff0c;直到所…

深度优先与广度优先

深度优先遍历简称DFS&#xff08;Depth First Search&#xff09;&#xff0c;广度优先遍历简称BFS&#xff08;Breadth First Search&#xff09;&#xff0c;它们是遍历图当中所有顶点的两种方式。 深度优先遍历&#xff1a; 选取一个节点开始&#xff0c;沿着一条路一直走…

深度优先遍历(DFS)和广度优先遍历(BFS)

深度优先遍历&#xff08;DFS&#xff09;和广度优先遍历&#xff08;BFS&#xff09; 图的遍历&#xff1a;所谓遍历&#xff0c;即是对结点的访问。一个图有多个结点&#xff0c;如何遍历这些结点&#xff0c;有两种访问策略&#xff1a; 深度优先遍历(Depth First Search, …

深度优先与广度优先的区别!

从深度优先和广度优先两个角度解决同一个问题 题目 从一号顶点开始遍历这个图&#xff0c;使用深度优先搜索和广度优先搜索的2种遍历结果 深度优先遍历的主要思想就是&#xff0c;首先以一个未被访问过的顶点作为起始顶点&#xff0c;沿着当前顶点的边走到未访问过的顶点&…

数据结构:图的遍历--深度优先、广度优先

图的遍历&#xff1a;深度优先、广度优先 遍历 图的遍历是指从图中的某一顶点出发&#xff0c;按照一定的策略访问图中的每一个顶点。当然&#xff0c;每个顶点有且只能被访问一次。 在图的遍历中&#xff0c;深度优先和广度优先是最常使用的两种遍历方式。这两种遍历方式对无…

深度优先搜索与广度优先搜索

算法是作用于具体数据结构之上的&#xff0c;深度优先搜索算法和广度优先搜索算法都是基于“图”这种数据结构的。这是因为&#xff0c;图这种数据结构的表达能力很强&#xff0c;大部分涉及搜索的场景都可以抽象成“图”。 图上的搜索算法&#xff0c;最直接的理解就是&#…

广度优先搜索和深度优先搜索

文章目录 1. 前言2. 广度优先搜索和深度优先搜索1&#xff09;深度优先搜索2&#xff09;广度优先搜索 3. 深度优先搜索算法框架1&#xff09;二叉树深度优先搜索模板2&#xff09;图深度优先搜索模板3&#xff09;二维矩阵深度优先搜索模板 4. 广度优先搜索算法框架1&#xff…

深度优先和广度优先算法

1、深度优先算法 遍历规则&#xff1a;不断地沿着顶点的深度方向遍历。顶点的深度方向是指它的邻接点方向。 最后得出的结果为&#xff1a;ABDECFHG。 Python代码实现的伪代码如下&#xff1a; 2、广度优先算法&#xff1a; 遍历规则&#xff1a; 1&#xff09;先访问完当…

深度优先搜索(DFS)和广度优先搜索(BFS)

代码随想录 深度优先搜索和广度优先搜索&#xff0c;都是图形搜索算法&#xff0c;它两相似&#xff0c;又却不同&#xff0c;在应用上也被用到不同的地方。这里拿一起讨论&#xff0c;方便比较。 先给大家说一下两者大概的区别&#xff1a; 如果搜索是以接近起始状态的程序依次…

算法:深度优先和广度优先(DFS,BFS)

一丶深度优先&#xff08;DFS&#xff09; 深度优先顾名思义: 就是往深的地方优先查找或遍历。 如图二叉树&#xff0c;想遍历树中所有结点可以用中序遍历&#xff0c;前序或后序。如果某一结点还有子结点就会往深处就是往下一结点&#xff0c;一直遍历直到最后一个结点没有子…

【算法】深度优先和广度优先

本文只是总结的相关概念&#xff0c;仅供自己复习&#xff0c;严禁转载&#xff0c;文末附有本文内容涉及的文章链接&#xff0c;请点开链接查看原文&#xff01; &#xff08;一&#xff09;深度优先 深度优先搜索属于图算法的一种&#xff0c;是一个针对图和树的遍历算法&am…

算法:深度优先遍历和广度优先遍历

什么是深度、广度优先遍历 图的遍历是指&#xff0c;从给定图中任意指定的顶点&#xff08;称为初始点&#xff09;出发&#xff0c;按照某种搜索方法沿着图的边访问图中的所有顶点&#xff0c;使每个顶点仅被访问一次&#xff0c;这个过程称为图的遍历。遍历过程中得到的顶点…

ms17010利用失败解决一则

没有反弹得到session并且提示如下&#xff1a; [-] 10.0.131.2:445 - Service failed to start, ERROR_CODE: 216 换了一个payload set payload windows/meterpreter/reverse_tcp set payload windows/x64/meterpreter/bind_tcp 就可以了。 如果遇到Unable to continue with i…

永恒之蓝MS17010复现

MS17010复现 靶机win7&#xff1a;192.168.41.150 攻击kali: 192.168.41.147 扫描 通过auxiliary/scanner/smb/smb_ms17_010模块扫描虚拟机是否存在ms17010漏洞 存在 拿shell 通过exploit/windows/smb/ms17_010_eternalblue 直接exp打&#xff0c;设置好参数和payload,window…

MS17010(永恒之蓝)漏洞利用与复现

MS17010(永恒之蓝)漏洞利用与复现 0X00简介 永恒之蓝是指2017年4月14日晚&#xff0c;黑客团体Shadow Brokers&#xff08;影子经纪人&#xff09;公布一大批网络攻击工具&#xff0c;其中包含“永恒之蓝”工具&#xff0c;“永恒之蓝”利用Windows系统的SMB漏洞可以获取系统…

网安学习记录1 ms17010漏洞

使用nmap对win7进行端口扫描 进行ms17-010漏洞利用

ms17010漏洞复现-2003

先使用Smbtouch模块检测一下是否有漏洞。 然后使用Doublepulsar写一个shellcode到本地。 生成成功后的截图&#xff1a; 再使用EternalRomance植入Doublepulsar后门。 成功的截图&#xff1a; PS:仿佛是由于之前已经上传过bin的缘故&#xff0c;第二次测试的时候失败了。但是不…