机器学习笔记:t-SNE

article/2025/9/29 13:39:39

0 前言

  • t-SNEt-Distributed Stochastic Neighbor Embedding
  • 是一种非常常用的数据降维,常用于数据可视化
  • t-SNE/SNE的基本原理是:
    • 高维空间构建一个概率分布拟合高维样本点间的相对位置关系
    • 低维空间,也构建 一个概率分布,拟合低维样本点之间的位置关系
    • 通过学习,调整低维数据点, 令两个分布接近

1 SNE 随机邻域嵌入 Stochastic Neighbor Embedding

 (类似于softmax)

 

  • 如果低维映射点yi和yj成功正确地建模了高维数据点xi和xj之间的相似性,则条件概率pj|i和qj|i将相等。
  • 受这一观察结果的启发,SNE的目标是找到一种低维数据表示法,以最小化pj|i和qj|i之间的分布距离(两个条件分布接近)

1.1 SNE主要缺点

1.1.1 距离不对称

不难发现P_{i|j},P_{j|i}是不等的(分母不一样) ,这就导致了i—>j和j—>i的距离不对称。【与实际情况不符】

改进的方法是使用联合概率而不是条件概率

        在实际问题中,计算所有的exp(-||x_k-x_l||^2/2\sigma^2)需要太多的计算复杂度,于是实际应用中,一般是:

 1.1.2 拥挤体现

        从高维到低维进行转换的过程中,低维点的距离无法建模高维点之间的位置关系,使得高维空间中距离较大的点对,在低维空间距离会变得较小
比如原来红绿点之间距离很远,降维之后距离就很近了
解决方法 
利用拖尾较大的 student-t分布 来对低维点建模

 

 

 2 T-SNE

2.1 σ的求法

最naive的方法就是随机设置了。 

更有效地方法如下:

我们把

 

看成高斯分布,那么σ就类似于标准差

根据高斯分布的性质,我们知道,在\bar{x} \pm k\sigma(k是一个常数)的区间内,概率是比较大的。

所以我们根据xi周围临近点的数量,来增减σ

那么,如何对σ进行定量的约束呢,我们设置一个固定的参数perlexity,表示分布的熵。

其中

不难发现熵(perplexity)和σi成正比,所以我们可用类似于二分查找法来确定σi

 


http://chatgpt.dhexx.cn/article/wSmYOJm6.shtml

相关文章

图像异常检测

点击上方“小白学视觉”,选择加"星标"或“置顶” 重磅干货,第一时间送达在机器学习中,处理异常检测任务是很常见的。数据科学家经常遇到必须显示,解释和预测异常的问题。在这篇文章中,我们主要讲述&#xff…

python进行图像边缘检测

边缘检测 图像边缘是指图像中表达物体的周围像素灰度发生阶跃变化的那些像素集合。 图像中两个灰度不同的相邻区域的交界处,必然存在灰度的快速过渡或称为跳变,它们与图像中各区域边缘的位置相对应,边缘蕴含了丰富的内在信息,如方…

用CNN识别CT图像检测肺癌

用CNN识别CT图像检测肺癌 原文:2nd place solution for the 2017 national datascience bowl 翻译参考:知乎用户王小新 Kaggle百万美元大赛优胜者:用CNN识别CT图像检测肺癌 概要 本文为2017年由Kaggle举办的数据科学竞赛的第二名获奖者Juli…

机场航拍图像检测软件(Python+YOLOv5深度学习模型+清新界面)

摘要:机场航拍图像检测软件使用深度学习技术检测机场航拍图像中的飞机目标等,识别航拍目标等结果并记录和保存,辅助机场智能管理运行。在介绍算法原理的同时,给出Python的实现代码、训练数据集,以及PyQt的UI界面。机场…

半监督学习+3D医疗图像检测 FocalMix

目录 Abstract 1.Contributions Introduction 2. Background and Preliminaries背景和准备工作 2.1.1 Anchor boxes 2.1.2 Focal Loss 2.2. Semi-supervised Learning 3. Methodology 3.1. Soft-target Focal Loss 3.2. Anchor-level Target Prediction 3.3. MixUp A…

检测 图像中得直线

Radon 变换 介绍 图像投影,就是说将图像在某一方向上做线性积分(或理解为累加求和)。如果将图像看成二维函数f(x, y),则其投影就是在特定方向上的线性积分,比如f(x, y)在垂直方向上的线性积分就是其在x轴上的投影&…

遥感图像目标检测研究综述

遥感图像目标检测 遥感图像特殊性一、目标检测研究综述1.介绍2.传统目标检测3.基于深度学习目标检测R-CNN系列为代表的两阶段算法YOLO、SSD为代表的一阶段算法 二、多尺度目标检测研究综述1.基于图像金字塔的多尺度目标检测基于尺度生成网络的图像金字塔基于尺度归一化的图像金…

工业自动化流水线上的机器视觉检测应用 (二):图像检测

图像检测是用机器代替人眼来做测量和判断,使用工业相机等机器视觉产品将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统等通过分析这些信号进行…

基于卷积神经网络的多目标图像检测研究(一)

摘 要 目标检测任务简单来说是在图片或视频中指出多个特定目标并以方框形式给出这些物体在图片中的位置和大小。它与我们的生活密切相关,它被广泛应用于安全识别、无人驾驶、医疗诊断、图像检索等领域,并且未来将愈发重要。因此目标检测也是近年来机器学…

图像检测系列之(12)异常检测(13)拼接伪造(14)deepfake | ICCV2021生成对抗GAN汇总梳理...

(1)GAN改进系列 | 最新ICCV2021生成对抗网络GAN论文梳理汇总图像编辑系列之(2)基于StyleGAN(3)GAN逆映射(4)人脸 (5)语义生成 | ICCV2021生成对抗GAN梳理汇总…

文章摘要 如何使用CLIP做图像检测 RegionCLIP:基于区域的文本-图像预训

摘要:使用图像-文本对的对比语言图像预训练模型(CLIP)在零样本和迁移学习环境下的图像分类方面都取得了令人印象深刻的结果。但直接应用CLIP模型识别图像区域进行对象检测效果并不好,这是因为CLIP被训练为将图像作为一个整体与文本…

图像检测之抽烟检测与打电话检测

识别司机是否抽烟和是否打电话的图像算法,通过深度学习实现,其中用到了一些opencv的知识,效果图如下: 相关技术资料请见本人其它博客文章

图像检测技术的研究现状

图像检测技术的研究现状 技术检测 图像处理知识库 2016-01-08 19:59 图像检测技术的研究现状 所谓图像检测,就是通过图像对感兴趣的特征区域(检测目标)进行提取的过程,其中图像是承载检测目标的载体,检测目标需要事先…

YOLT遥感图像检测算法详解

You Only Look Twice: Rapid Multi-Scale Object Detection InSatellite Imagery-论文链接-代码链接 目录 1、需求解读2、遥感图像处理和普通图像处理的区别与联系3、YOLT检测算法分析3.1 遥感图像中的视觉挑战3.2 YOLT检测算法简介 4、YOLT检测算法实现详解4.1 YOLT检测算法网…

opencv 简单的图像检测,识别,标注,

2022/4/19 刚刚做了个升级版,就是第二种读取文件的方式,另外分函数写了 链接: python opencv 简单图像识别,标注 [升级版]_死非死的…

医学图像3D目标检测

医学图像3D目标检测 论文:3D Bounding Box Detection in Volumetric Medical Image Data: A Systematic Literature Review 这篇论文综述了近五年在三维医学数据中进行3D Bouding Box Detection的方法。 1、论文背景 VOI的提取是重要的预处理步骤,例如…

图像检测常用评价指标与数据集

评价指标 1.准确率(Accuracy) 检测时分对的样本数除以所有的样本数。准确率一般被用来评估检测模型的全局准确程度,包含的信息有限,不能完全评价一个模型性能。 2.混淆矩阵(Confusion Matrix) 混淆矩阵是以模型预测的类别数量统计信息为横轴&#xff0c…

基于Yolov5的医学图像检测

yolov5医学图像检测练手项目: 数据集分布如下: 5S改进检测结果如下,可加入注意力机制、多尺度等技术提升检测精度 专注于各个行业的落地应用,如工业检测、医学图像检测等;

图像边缘检测

文章目录 1. 什么是边缘检测2 边缘检测的常用方法及Python应用2.1 一阶微分算子2.1.1 Roberts算子2.1.2 Prewitt算子2.1.3 Sobel算子 2.2 二阶微分算子2.2.1 Laplacian算子2.2.2 Canny算子 3. 源码仓库地址 1. 什么是边缘检测 边缘检测是图像处理与计算机视觉中的重要技术之一…

图像检测:图像分类

图像分类 判断图片中是否有某个物体,一个图对应一个标签 卷积神经网络(CNN) 网络进化: 网络: AlexNet→VGG→GoogLeNet→ResNet 深度: 8→19→22→152 VGG结构简洁有效: 容易修改,迁移到其…