机场航拍图像检测软件(Python+YOLOv5深度学习模型+清新界面)

article/2025/9/29 13:40:20

在这里插入图片描述

摘要:机场航拍图像检测软件使用深度学习技术检测机场航拍图像中的飞机目标等,识别航拍目标等结果并记录和保存,辅助机场智能管理运行。在介绍算法原理的同时,给出Python的实现代码、训练数据集,以及PyQt的UI界面。机场航拍检测系统主要检测飞机的数目、位置、预测置信度等;连接摄像头设备可开启实时检测功能,另外对图片、视频等文件也可进行测试和检测;登录系统提供用户注册、登录、管理功能;训练和调优的模型可有效检测,模型可选择切换。博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。本博文目录如下:

文章目录

  • 前言
  • 1. 效果演示
  • 2. 机场航拍数据集及训练
  • 3. 机场航拍图像检测识别
  • 下载链接
  • 结束语

➷点击跳转至文末所有涉及的完整代码文件下载页☇

机场航拍图像检测系统演示与介绍(Python+YOLOv5深度学习模型+清新界面)


前言

        机场航拍图像检测是指利用机载摄像机获取机场场区图像,并利用计算机视觉技术对图像进行分析和处理,以实现机场安全、运行和管理的目的。机场航拍图像检测涵盖了航道、跑道、停机坪、航站楼、机库等各个方面,包括飞机起降、滑行、停靠、维修、安检等过程。机场航拍图像检测的技术方法主要包括目标检测、图像分割、特征提取、分类识别等。其中,目标检测是机场航拍图像检测的核心技术,可以通过机器学习、深度学习等方法实现。机场航拍图像检测的应用可以提高机场安全性和运行效率,为机场管理部门提供及时准确的数据支持,也为机场服务企业和航空公司提供更好的服务。

        这里给出博主设计的软件界面,同款的简约风,功能也可以满足图片、视频和摄像头的识别检测,希望大家可以喜欢,初始界面如下图:

在这里插入图片描述

        检测飞机时的界面截图(点击图片可放大)如下图,可识别画面中存在的多个飞机,也可开启摄像头或视频检测:

在这里插入图片描述

         详细的功能演示效果参见博主的B站视频或下一节的动图演示,觉得不错的朋友敬请点赞、关注加收藏!系统UI界面的设计工作量较大,界面美化更需仔细雕琢,大家有任何建议或意见和可在下方评论交流。


1. 效果演示

        首先我们还是通过动图看一下识别的效果,系统主要实现的功能是对图片、视频和摄像头画面中的航拍图像进行识别,识别的结果可视化显示在界面和图像中,另外提供多个目标的显示选择功能,演示效果如下。

(一)用户注册登录界面

        这里设计了一个登录界面,可以注册账号和密码,然后进行登录。界面还是参考了当前流行的UI设计,左侧是一个LOGO图,右侧输入账号、密码、验证码等等。

在这里插入图片描述

(二)选择图片识别

        在系统中可以选择图片文件进行识别,点击图片选择按钮图标选择图片后,显示所有识别的结果,可通过下拉选框查看单个目标的结果。本功能的界面展示如下图所示:

在这里插入图片描述

(三)视频识别效果展示

        很多时候我们需要识别一段视频,这里设计了视频选择功能。点击视频按钮可选择待检测的视频,系统会自动解析视频逐帧识别图片中的飞机,并将结果记录在右下角表格中,效果如下图所示:

在这里插入图片描述

(四)摄像头检测效果展示

        在真实场景中,我们往往利用设备摄像头获取实时画面,因此本文考虑到此项功能。如下图所示,点击摄像头按钮后系统进入准备状态,系统显示实时画面并开始检测画面,识别结果展示如下图:

在这里插入图片描述


2. 机场航拍数据集及训练

        这里我们使用的航拍图像数据集,包括训练数据集708张图片,验证集68张,测试集34张图片,共计810张图片。部分数据集的图像及标注如下图所示:

在这里插入图片描述

        每张图像均提供了图像类标记信息,图像中飞机的bounding box,飞机的关键part信息,以及飞机的属性信息,数据集并解压后得到如下的图片。

在这里插入图片描述
        以下给出本系统项目的文件目录,其中包含了YOLOv5相关的代码以及界面设计代码,如下图所示。对于训练模型部分只需要关注train.py这个文件,训练用到的数据集、标注文件及配置文件在本项目中已配置完成。

        关于这个项目,我们首先要安装python的依赖库,配置一个Python3.8然后按照requirements.txt里面的依赖装环境就可以运行了。

#请按照给定的python版本配置环境,否则可能会因依赖不兼容而出错
conda create -n env_rec python=3.8
#激活环境
activate env_rec
#使用pip安装所需的以来,可通过requirement.txt
pip install -r requirements.txt

        到这,深度学习所需的环境和依赖包就准备好了,现在对整个代码目录做一个介绍:

在这里插入图片描述

        data:主要是存放一些超参数的配置文件(这些文件(yaml文件)是用来配置训练集和测试集还有验证集的路径的,其中还包括目标检测的种类数和种类的名称);

        models:里面主要是一些网络构建的配置文件和函数,其中包含了该项目的四个不同的版本,分别为是s、m、l、x。从名字就可以看出,这几个版本的大小。他们的检测测度分别都是从快到慢,但是精确度分别是从低到高。如果训练自己的数据集,需要修改这里面相对应的yaml文件来训练自己模型。

        utils:存放的是工具类的函数,里面有loss函数,metrics函数,plots函数等等。

        weights:放置训练好的权重参数。

        testPicture.py, testVideo.py:利用训练好的权重参数进行目标检测,可以进行图像、视频和摄像头的检测。

        train.py:训练自己的数据集的函数。

        requirements.txt:这是一个文本文件,里面写着使用yolov5项目的环境依赖包的一些版本,可以利用该文本导入相应版本的包。

        以上就是本项目代码的整体介绍。我们训练和测试自己的数据集基本就是利用到如上的代码,这里可以运行train.py文件训练目标检测模型,以下是在终端运行训练的截图。

在这里插入图片描述

        在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图为博主训练飞机识别的模型训练曲线图。

在这里插入图片描述

        一般我们会接触到两个指标,分别是召回率recall和精度precision,两个指标p和r都是简单地从一个角度来判断模型的好坏,均是介于0到1之间的数值,其中接近于1表示模型的性能越好,接近于0表示模型的性能越差,为了综合评价目标检测的性能,一般采用均值平均密度map来进一步评估模型的好坏。我们通过设定不同的置信度的阈值,可以得到在模型在不同的阈值下所计算出的p值和r值,一般情况下,p值和r值是负相关的,绘制出来可以得到如下图所示的曲线,其中曲线的面积我们称AP,目标检测模型中每种目标可计算出一个AP值,对所有的AP值求平均则可以得到模型的mAP值,以本文为例,我们可以计算佩戴安全帽和未佩戴安全帽的两个目标的AP值,我们对两组AP值求平均,可以得到整个模型的mAP值,该值越接近1表示模型的性能越好。关于更加学术的定义大家可以在知乎或者csdn上自行查阅,以我们本次训练的模型为例,在模型结束之后你会找到图像,分别表示我们模型在验证集上的召回率、准确率和均值平均密度。
在这里插入图片描述

        以PR-curve为例,可以看到我们的模型在验证集上的均值平均准确率为0.938。

3. 机场航拍图像检测识别

        在训练完成后得到最佳模型,接下来我们将帧图像输入到这个网络进行预测,从而得到预测结果,预测方法(predict.py)部分的代码如下所示:

def predict(img):img = torch.from_numpy(img).to(device)img = img.half() if half else img.float()img /= 255.0if img.ndimension() == 3:img = img.unsqueeze(0)t1 = time_synchronized()pred = model(img, augment=False)[0]pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes,agnostic=opt.agnostic_nms)t2 = time_synchronized()InferNms = round((t2 - t1), 2)return pred, InferNms

        得到预测结果我们便可以将帧图像中的飞机框出,然后在图片上用opencv绘图操作,输出飞机的预测分数。以下是读取一个飞机图片并进行检测的脚本,首先将图片数据进行预处理后送predict进行检测,然后计算标记框的位置并在图中标注出来。

if __name__ == '__main__':img_path = "./UI_rec/test_/airport_136_jpg"image = cv_imread(img_path)image = cv2.resize(image, (850, 500))img0 = image.copy()img = letterbox(img0, new_shape=imgsz)[0]img = np.stack(img, 0)img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416img = np.ascontiguousarray(img)pred, useTime = predict(img)det = pred[0]p, s, im0 = None, '', img0if det is not None and len(det):  # 如果有检测信息则进入det[:, :4] = scale_coords(img.shape[1:], det[:, :4], im0.shape).round()  # 把图像缩放至im0的尺寸number_i = 0  # 类别预编号detInfo = []for *xyxy, conf, cls in reversed(det):  # 遍历检测信息c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))# 将检测信息添加到字典中detInfo.append([names[int(cls)], [c1[0], c1[1], c2[0], c2[1]], '%.2f' % conf])number_i += 1  # 编号数+1label = '%s %.2f' % (names[int(cls)], conf)# 画出检测到的目标物plot_one_box(image, xyxy, label=label, color=colors[int(cls)])# 实时显示检测画面cv2.imshow('Stream', image)# if cv2.waitKey(1) & 0xFF == ord('q'):#     breakc = cv2.waitKey(0) & 0xff

        执行得到的结果如下图所示,图中飞机的种类和置信度值都标注出来了,预测速度较快。基于此模型我们可以将其设计成一个带有界面的系统,在界面上选择图片、视频或摄像头然后调用模型进行检测。

在这里插入图片描述

        博主对整个系统进行了详细测试,最终开发出一版流畅得到清新界面,就是博文演示部分的展示,完整的UI界面、测试图片视频、代码文件,以及Python离线依赖包(方便安装运行,也可自行配置环境),均已打包上传,感兴趣的朋友可以通过下载链接获取。

在这里插入图片描述


下载链接

    若您想获得博文中涉及的实现完整全部程序文件(包括测试图片、视频,py, UI文件等,如下图),这里已打包上传至博主的面包多平台,见可参考博客与视频,已将所有涉及的文件同时打包到里面,点击即可运行,完整文件截图如下:

在这里插入图片描述

    在文件夹下的资源显示如下,下面的链接中也给出了Python的离线依赖包,读者可在正确安装Anaconda和Pycharm软件后,复制离线依赖包至项目目录下进行安装,离线依赖的使用详细演示也可见本人B站视频:win11从头安装软件和配置环境运行深度学习项目、Win10中使用pycharm和anaconda进行python环境配置教程。

在这里插入图片描述

注意:该代码采用Pycharm+Python3.8开发,经过测试能成功运行,运行界面的主程序为runMain.py和LoginUI.py,测试图片脚本可运行testPicture.py,测试视频脚本可运行testVideo.py。为确保程序顺利运行,请按照requirements.txt配置Python依赖包的版本。Python版本:3.8,请勿使用其他版本,详见requirements.txt文件;

完整资源中包含数据集及训练代码,环境配置与界面中文字、图片、logo等的修改方法请见视频,项目完整文件下载请见参考博客文章里面,或参考视频的简介处给出:➷➷➷

参考博客文章:https://www.cnblogs.com/sixuwuxian/p/17238180.html

参考视频演示:https://www.bilibili.com/video/BV11k4y1h7BP/

离线依赖库下载链接:https://pan.baidu.com/s/1hW9z9ofV1FRSezTSj59JSg?pwd=oy4n (提取码:oy4n )


界面中文字、图标和背景图修改方法:

        在Qt Designer中可以彻底修改界面的各个控件及设置,然后将ui文件转换为py文件即可调用和显示界面。如果只需要修改界面中的文字、图标和背景图的,可以直接在ConfigUI.config文件中修改,步骤如下:
        (1)打开UI_rec/tools/ConfigUI.config文件,若乱码请选择GBK编码打开。
        (2)如需修改界面文字,只要选中要改的字符替换成自己的就好。
        (3)如需修改背景、图标等,只需修改图片的路径。例如,原文件中的背景图设置如下:

mainWindow = :/images/icons/back-image.png

        可修改为自己的名为background2.png图片(位置在UI_rec/icons/文件夹中),可将该项设置如下即可修改背景图:

mainWindow = ./icons/background2.png

结束语

        由于博主能力有限,博文中提及的方法即使经过试验,也难免会有疏漏之处。希望您能热心指出其中的错误,以便下次修改时能以一个更完美更严谨的样子,呈现在大家面前。同时如果有更好的实现方法也请您不吝赐教。


http://chatgpt.dhexx.cn/article/t3eROeQJ.shtml

相关文章

半监督学习+3D医疗图像检测 FocalMix

目录 Abstract 1.Contributions Introduction 2. Background and Preliminaries背景和准备工作 2.1.1 Anchor boxes 2.1.2 Focal Loss 2.2. Semi-supervised Learning 3. Methodology 3.1. Soft-target Focal Loss 3.2. Anchor-level Target Prediction 3.3. MixUp A…

检测 图像中得直线

Radon 变换 介绍 图像投影,就是说将图像在某一方向上做线性积分(或理解为累加求和)。如果将图像看成二维函数f(x, y),则其投影就是在特定方向上的线性积分,比如f(x, y)在垂直方向上的线性积分就是其在x轴上的投影&…

遥感图像目标检测研究综述

遥感图像目标检测 遥感图像特殊性一、目标检测研究综述1.介绍2.传统目标检测3.基于深度学习目标检测R-CNN系列为代表的两阶段算法YOLO、SSD为代表的一阶段算法 二、多尺度目标检测研究综述1.基于图像金字塔的多尺度目标检测基于尺度生成网络的图像金字塔基于尺度归一化的图像金…

工业自动化流水线上的机器视觉检测应用 (二):图像检测

图像检测是用机器代替人眼来做测量和判断,使用工业相机等机器视觉产品将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统等通过分析这些信号进行…

基于卷积神经网络的多目标图像检测研究(一)

摘 要 目标检测任务简单来说是在图片或视频中指出多个特定目标并以方框形式给出这些物体在图片中的位置和大小。它与我们的生活密切相关,它被广泛应用于安全识别、无人驾驶、医疗诊断、图像检索等领域,并且未来将愈发重要。因此目标检测也是近年来机器学…

图像检测系列之(12)异常检测(13)拼接伪造(14)deepfake | ICCV2021生成对抗GAN汇总梳理...

(1)GAN改进系列 | 最新ICCV2021生成对抗网络GAN论文梳理汇总图像编辑系列之(2)基于StyleGAN(3)GAN逆映射(4)人脸 (5)语义生成 | ICCV2021生成对抗GAN梳理汇总…

文章摘要 如何使用CLIP做图像检测 RegionCLIP:基于区域的文本-图像预训

摘要:使用图像-文本对的对比语言图像预训练模型(CLIP)在零样本和迁移学习环境下的图像分类方面都取得了令人印象深刻的结果。但直接应用CLIP模型识别图像区域进行对象检测效果并不好,这是因为CLIP被训练为将图像作为一个整体与文本…

图像检测之抽烟检测与打电话检测

识别司机是否抽烟和是否打电话的图像算法,通过深度学习实现,其中用到了一些opencv的知识,效果图如下: 相关技术资料请见本人其它博客文章

图像检测技术的研究现状

图像检测技术的研究现状 技术检测 图像处理知识库 2016-01-08 19:59 图像检测技术的研究现状 所谓图像检测,就是通过图像对感兴趣的特征区域(检测目标)进行提取的过程,其中图像是承载检测目标的载体,检测目标需要事先…

YOLT遥感图像检测算法详解

You Only Look Twice: Rapid Multi-Scale Object Detection InSatellite Imagery-论文链接-代码链接 目录 1、需求解读2、遥感图像处理和普通图像处理的区别与联系3、YOLT检测算法分析3.1 遥感图像中的视觉挑战3.2 YOLT检测算法简介 4、YOLT检测算法实现详解4.1 YOLT检测算法网…

opencv 简单的图像检测,识别,标注,

2022/4/19 刚刚做了个升级版,就是第二种读取文件的方式,另外分函数写了 链接: python opencv 简单图像识别,标注 [升级版]_死非死的…

医学图像3D目标检测

医学图像3D目标检测 论文:3D Bounding Box Detection in Volumetric Medical Image Data: A Systematic Literature Review 这篇论文综述了近五年在三维医学数据中进行3D Bouding Box Detection的方法。 1、论文背景 VOI的提取是重要的预处理步骤,例如…

图像检测常用评价指标与数据集

评价指标 1.准确率(Accuracy) 检测时分对的样本数除以所有的样本数。准确率一般被用来评估检测模型的全局准确程度,包含的信息有限,不能完全评价一个模型性能。 2.混淆矩阵(Confusion Matrix) 混淆矩阵是以模型预测的类别数量统计信息为横轴&#xff0c…

基于Yolov5的医学图像检测

yolov5医学图像检测练手项目: 数据集分布如下: 5S改进检测结果如下,可加入注意力机制、多尺度等技术提升检测精度 专注于各个行业的落地应用,如工业检测、医学图像检测等;

图像边缘检测

文章目录 1. 什么是边缘检测2 边缘检测的常用方法及Python应用2.1 一阶微分算子2.1.1 Roberts算子2.1.2 Prewitt算子2.1.3 Sobel算子 2.2 二阶微分算子2.2.1 Laplacian算子2.2.2 Canny算子 3. 源码仓库地址 1. 什么是边缘检测 边缘检测是图像处理与计算机视觉中的重要技术之一…

图像检测:图像分类

图像分类 判断图片中是否有某个物体,一个图对应一个标签 卷积神经网络(CNN) 网络进化: 网络: AlexNet→VGG→GoogLeNet→ResNet 深度: 8→19→22→152 VGG结构简洁有效: 容易修改,迁移到其…

相似图像的检测方法

背景 以图搜图,是日常生活中我们经常会用到,例如在选购一款商品时,想要对比价格,往往会在各个购物app上通过搜图的形式来看同一款产品的价格;当你碰到某种不认识的植物时,也可以通过以图搜图的方式来获取该…

图像检测

图像中的目标检测涉及识别各种子图像并且围绕每个识别的子图像周围绘制一个边界框。 不需要判断是什么类型,后面可以做图像识别 经典网络: 图像分类的深度学习工具是区域卷积神经网络(R-CNN) 第一阶段:R-CNN->S…

计算机视觉-深度学习图像检测方法梳理

计算机视觉-深度学习图像检测方法梳理 由于之后要转方向啦,趁这段时间整理手中硕士研究方向的一些阅读笔记,这是一篇关于计算机视觉的基础知识梳理 先搞清一些小知识点 首先我们要弄清楚图像分类、目标定位、语义分割、实例分割的区别 a. 图像分类 &…

树上倍增法

一 点睛 树上倍增法不仅可以解决 LCA问题,还可以解决很多其他问题。 F[i,j] 表示 i 2^j 辈祖先,即 i 节点向根节点走 2^j 步到达的节点。 u 节点向上走 2^0步,即为 u 的父节点 x, F[u,0] x ;向上走 2^1…