检测 图像中得直线

article/2025/9/29 13:38:48

Radon 变换  

介绍

图像投影,就是说将图像在某一方向上做线性积分(或理解为累加求和)。如果将图像看成二维函数f(x, y),则其投影就是在特定方向上的线性积分,比如f(x, y)在垂直方向上的线性积分就是其在x轴上的投影;f(x, y)在水平方向上的线积分就是其在y轴上的投影。通过这些投影,可以获取图像在指定方向上的突出特性,这在图像模式识别等处理中可能会用到。

 

Radon变换(拉东变换),就是将数字图像矩阵在某一指定角度射线方向上做投影变换。这就是说可以沿着任意角度theta来做Radon变换。

 

Radon变换的理解


 

如图所示:在直角坐标系中,f(x,y)为线l上的点,P为坐标原点到线l上的距离,表示线l法线方向的夹角,因此直线方程可以表示为:Radon变换的理解
l线上的Radon变换的公式是:Radon变换的理解

另:Delta函数(狄拉克函数)为一个广义函数,没有具体定义,该函数在非零的点取值均为0,而在整个定义域的积分为1,这里写一个最简单的Delta函数,便于理解:

Radon变换的理解

结合直线方程,则Delta函数可以表示为:

Radon变换的理解

Radon变换可以写为

Radon变换的理解

Radon变换可以理解为图像在Radon变换的理解空间的投影,Radon变换的理解空间上的每一点对应(x,y)空间中的一条直线。

Radon变换可以用于直线检测,比Hough变换优越的地方在于:Radon变换可以针对非二值图像,Radon变换检测直线:当灰度值高的线段会在P 空间中形成亮点,而低灰度值的直线会在P 空间中形成暗点,而Hough变换需要针对二值图像进行,仅仅积攒非0点在某一个Radon变换的理解上的个数。

Radon变换的积分运算环节抵消了噪声所引起的亮度起伏,从直线检测方面看,Radon变换P 空间较源图像空间域的SNR高,因此Radon变换被用于低SNR图像线检测的原因。

 

理解

Radon变换的本质是将原来的函数做了一个空间转换,即,将原来的XY平面内的点映射到AB平面上,那么原来在XY平面上的一条直线的所有的点在AB平面上都位于同一点。记录AB平面上的点的积累厚度,便可知XY平面上的线的存在性。这便是大家所公认的Radon变换的实质所在。       

        上述听起来很在理也很简单,但却少了直观性。那么,详细的数学理论是什么呢?请看下文:

        如果我们将图像中心设为原点,用\rho(直线到原点的距离)和\theta(某一特定方向)代替a、b,即,理解为图像在空间的投影,如图-1所示,用参数表示上述直线,则有:


        假定有一个函数f(x,y),如图-2所示,那么该函数过直线L区域的积分即为:

其中ds是该直线的微分。
       上述关于x,y的积分是很容易求解的,其中一种求解技巧是借助Delta函数,上述积分可以写为:

另:Delta函数(狄拉克函数)为一个广义函数,没有具体定义,该函数在非零的点取值均为0,而在整个定义域的积分为1,这里写一个最简单的Delta函数,便于理解:

Radon变换的理解

Radon变换的理解

 

 


        因而,给定一组\rho \theta那么就可以得出一个沿L(\rho,\theta)的积分值。因此,Radon变换就是函数f (x,y)的线积分,如图-3所示。

     假如有很多平行于L的线,他们有相同的\theta,径向坐标\rho却不同,这就很好的印证了matlab自带的radon变换命令中每个\theta角度的Radon变换结果是有两个输出项R(特定角度下的Radon变换值也即线积分值)与xp,一一对应(xp可缺省)。我们对每一条这样的平行线都做f(x,y)的线积分,会产生很多投影线,如图-4所示。也就是说对一幅图像在某一特定角度下的Radon变换会产生N个线积分值(Radon变换),而每一个线积分值会对应一个径向坐标xp,如图-5所示。各个角度的Radon变换值汇总在一起就构成一幅Radon变化图。

      Radon变换将原图像空间中的直线映射为\rho \theta 空间中的点(线积分值),图像中高灰度值的直线会在\rho \theta空间形成亮点,而低灰度值的线段在\rho \theta空间形成暗点。因而,对直线的检测可转化为在变换区域对亮点、暗点的检测,另外,Radon变换的逆变换常用于医学CT断层成像图像的重建。

       下面给出我个人的几个简单的Radon变换与其重构matlab实验结果:


       另外:我实验的图像是长方形的,发现重构的结果内容显示并不全,研究了matlab内置的radon逆变换之后,稍微做了显示更改这才显示完全。
 

 

 

霍夫(hough)变换

理论分析

Hough变换的方法基本思想可以从检测图像中的直线这个简单问题中看到。直线由两点A=(X1,Y1)和B=(X2,Y2)定义,所下图1(a)示。通过点A的所有直线由y1=k*x1+q表示,k和q是某些值。这意味着同一个方程可以解释为参数空间k,q的方程。因此通过点A的所须直线可以表示为方程q=-x1*k+y1图1.(b)。类似地通过点B的直线可以表示q=-x2*k+y2。在参数空间k和q中,两条直线的唯一公共点是在原图像空间中表示连接点A和B的唯一存在的直线。

                                                     

这意味着图像中的每条直线在参数空k,q中由单独一个点表示,直线的任何一部分都变换为同一个点。直线检测的主要思想是确定图中所在的直线像素,将通过这些像素的所在直线变换到参数空间的对应点,在参数空间检测点(a,b),此点是图像中出现的直线y=ax+b的Hough变换的结果。

图像中所有可能的直线像素的检测,可以通过在图像中进行边缘检测子得到,所有边缘幅值超过某个阈值的像素都可以看作是可能的直线像素。在最一般的情况下,当我们没有任何有关图像中的直线信息,因此,所有方向的直线可能通过任何边缘像素。而在现在实现中,这些直线的数目是无限的,然而,为了实际目标,只能有限数目的直线方向。直线的可能方向定义了参数K的一个离散化,因此参数q也被采样为有限数目的值。所以参数空间不是连续的,而是被表示为矩形单元,称之为累计数组(accumulator array) A,它的元素是累计单元(Accumulator cells) A(k,q). 对于每个边缘元素,确定其参数k和q。这些参数表示了通过此像素的允许方向的直线。对于每条这样的直线,直线参数k和q的值用来增加累计单元A(k,q)的值。如果公式y=ax+b所表示的直线出现在图像中,A(a,b)的值会被增加很多次,而次数等于直线y=ax+b作为可能通过某个边缘像素的直线被检测到的数目。

对于任意像素P,通过它的直线可能是任何的方向k,但是第二个参数q受像素P图像坐标和方向k所约束。因此,存在于图像中的直线会引起图像中适合的累计单元值变大,而通近边缘像素的其他直线,它们不对应于图像中存在的直线,对于每个边缘像素具有不同的参数k和q,所以对应的累计单元极少被增加。即:图像中存在的直线可以作为累计数组中的高值累计单元被检测出业,检测到的直线参数由累计数组的坐标给出,结果是图像中直线的检测被为累计空间中的局部极值的检测。

我们可以注意到直线的参数方程y =kx+q只适合解释Hough变换原理,在检测垂直线条和参数的非线性离散化时会遇到困难。如果直线表示成s=xcosθ+ysinθ。Hough变换就没有这些局限性。直线还是被变换为单个点,因此可用该原理进行直线检测。如下图2所示:

                                                

我们要注意到Hough变换的重要性质是对图像中直线的殘缺部分、噪声以及其它共存的非直线结构不敏感。因为从图像空间到累计空间的变换的Robuestness引起的,直线殘缺的部分只会造成较低的局部极值。
 

https://blog.csdn.net/sinat_26681907/article/details/52277598

https://blog.csdn.net/songzitea/article/details/17027849


http://chatgpt.dhexx.cn/article/FAJVi0sD.shtml

相关文章

遥感图像目标检测研究综述

遥感图像目标检测 遥感图像特殊性一、目标检测研究综述1.介绍2.传统目标检测3.基于深度学习目标检测R-CNN系列为代表的两阶段算法YOLO、SSD为代表的一阶段算法 二、多尺度目标检测研究综述1.基于图像金字塔的多尺度目标检测基于尺度生成网络的图像金字塔基于尺度归一化的图像金…

工业自动化流水线上的机器视觉检测应用 (二):图像检测

图像检测是用机器代替人眼来做测量和判断,使用工业相机等机器视觉产品将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统等通过分析这些信号进行…

基于卷积神经网络的多目标图像检测研究(一)

摘 要 目标检测任务简单来说是在图片或视频中指出多个特定目标并以方框形式给出这些物体在图片中的位置和大小。它与我们的生活密切相关,它被广泛应用于安全识别、无人驾驶、医疗诊断、图像检索等领域,并且未来将愈发重要。因此目标检测也是近年来机器学…

图像检测系列之(12)异常检测(13)拼接伪造(14)deepfake | ICCV2021生成对抗GAN汇总梳理...

(1)GAN改进系列 | 最新ICCV2021生成对抗网络GAN论文梳理汇总图像编辑系列之(2)基于StyleGAN(3)GAN逆映射(4)人脸 (5)语义生成 | ICCV2021生成对抗GAN梳理汇总…

文章摘要 如何使用CLIP做图像检测 RegionCLIP:基于区域的文本-图像预训

摘要:使用图像-文本对的对比语言图像预训练模型(CLIP)在零样本和迁移学习环境下的图像分类方面都取得了令人印象深刻的结果。但直接应用CLIP模型识别图像区域进行对象检测效果并不好,这是因为CLIP被训练为将图像作为一个整体与文本…

图像检测之抽烟检测与打电话检测

识别司机是否抽烟和是否打电话的图像算法,通过深度学习实现,其中用到了一些opencv的知识,效果图如下: 相关技术资料请见本人其它博客文章

图像检测技术的研究现状

图像检测技术的研究现状 技术检测 图像处理知识库 2016-01-08 19:59 图像检测技术的研究现状 所谓图像检测,就是通过图像对感兴趣的特征区域(检测目标)进行提取的过程,其中图像是承载检测目标的载体,检测目标需要事先…

YOLT遥感图像检测算法详解

You Only Look Twice: Rapid Multi-Scale Object Detection InSatellite Imagery-论文链接-代码链接 目录 1、需求解读2、遥感图像处理和普通图像处理的区别与联系3、YOLT检测算法分析3.1 遥感图像中的视觉挑战3.2 YOLT检测算法简介 4、YOLT检测算法实现详解4.1 YOLT检测算法网…

opencv 简单的图像检测,识别,标注,

2022/4/19 刚刚做了个升级版,就是第二种读取文件的方式,另外分函数写了 链接: python opencv 简单图像识别,标注 [升级版]_死非死的…

医学图像3D目标检测

医学图像3D目标检测 论文:3D Bounding Box Detection in Volumetric Medical Image Data: A Systematic Literature Review 这篇论文综述了近五年在三维医学数据中进行3D Bouding Box Detection的方法。 1、论文背景 VOI的提取是重要的预处理步骤,例如…

图像检测常用评价指标与数据集

评价指标 1.准确率(Accuracy) 检测时分对的样本数除以所有的样本数。准确率一般被用来评估检测模型的全局准确程度,包含的信息有限,不能完全评价一个模型性能。 2.混淆矩阵(Confusion Matrix) 混淆矩阵是以模型预测的类别数量统计信息为横轴&#xff0c…

基于Yolov5的医学图像检测

yolov5医学图像检测练手项目: 数据集分布如下: 5S改进检测结果如下,可加入注意力机制、多尺度等技术提升检测精度 专注于各个行业的落地应用,如工业检测、医学图像检测等;

图像边缘检测

文章目录 1. 什么是边缘检测2 边缘检测的常用方法及Python应用2.1 一阶微分算子2.1.1 Roberts算子2.1.2 Prewitt算子2.1.3 Sobel算子 2.2 二阶微分算子2.2.1 Laplacian算子2.2.2 Canny算子 3. 源码仓库地址 1. 什么是边缘检测 边缘检测是图像处理与计算机视觉中的重要技术之一…

图像检测:图像分类

图像分类 判断图片中是否有某个物体,一个图对应一个标签 卷积神经网络(CNN) 网络进化: 网络: AlexNet→VGG→GoogLeNet→ResNet 深度: 8→19→22→152 VGG结构简洁有效: 容易修改,迁移到其…

相似图像的检测方法

背景 以图搜图,是日常生活中我们经常会用到,例如在选购一款商品时,想要对比价格,往往会在各个购物app上通过搜图的形式来看同一款产品的价格;当你碰到某种不认识的植物时,也可以通过以图搜图的方式来获取该…

图像检测

图像中的目标检测涉及识别各种子图像并且围绕每个识别的子图像周围绘制一个边界框。 不需要判断是什么类型,后面可以做图像识别 经典网络: 图像分类的深度学习工具是区域卷积神经网络(R-CNN) 第一阶段:R-CNN->S…

计算机视觉-深度学习图像检测方法梳理

计算机视觉-深度学习图像检测方法梳理 由于之后要转方向啦,趁这段时间整理手中硕士研究方向的一些阅读笔记,这是一篇关于计算机视觉的基础知识梳理 先搞清一些小知识点 首先我们要弄清楚图像分类、目标定位、语义分割、实例分割的区别 a. 图像分类 &…

树上倍增法

一 点睛 树上倍增法不仅可以解决 LCA问题,还可以解决很多其他问题。 F[i,j] 表示 i 2^j 辈祖先,即 i 节点向根节点走 2^j 步到达的节点。 u 节点向上走 2^0步,即为 u 的父节点 x, F[u,0] x ;向上走 2^1…

光电倍增管国产型号及相关知识

国产光电倍增管 南京永纪,GDB235 参考网址 请教光电倍增管在安装、使用注意事项,谢谢 (amobbs.com 阿莫电子论坛) 光电倍增管(PMT)使用注意 光电倍增管(PMT)使用注意_滨松光子学商贸(中国)有限公司 (ham…

倍增node

倍增 普及组的内容,思想很简单,但是考的可以挺难 倍增是啥东西 “ 倍增,顾名思义,就是每次增加一倍。 展开来说,就是每次根据已经得到的信息,将考虑的范围增加一倍, 从而加速操作。倍增思想有…