拉格朗日乘子法几何意义

article/2025/8/20 17:38:53

为什么出现拉格朗日乘子法?

  • 最短路径问题
  • 从几何意义中获得灵感:
  • 从数学公式中获得灵感
  • 推广到高维空间

一个最短路径问题

假设你在M点,需要先到河边(上图右侧曲线 )再回到C点,如何规划路线最短?

 

假设:
河流曲线满足方程 g(x,y) = 0 (例如 如果它是一个圆:f(x,y)=x^{2}+y^{2}-r^{2})

用P表示河边上的任意P(x,y)点,
用d(M,P)表示M,P之间距离,
那么问题可以描述为:minf(P)=d(M,P)+d(P,C),约束g(P)=0;

如何求解问题?

1. 从几何意义中获得灵感:

首先,f(P)是一个标量(只有大小没有方向),那么在上图的二维空间中必然存在了一个标量场f(P),即对于每一个点P都对应着一个f(P)值,它代表经过该点的路径总和是多少。
如果我们画出它的等值线(场线),就会发现它呈椭圆向外辐射:


显然,f(P)的等值线与河边曲线的交点P即为我们想求的点。

 

那么问题来了: 这样的点满足何种性质? (如果没有性质也就无法列出关系式进行求解,但是这么特殊的点极有可能存在良好某种特性)

 

最直观的性质: 等值线(椭圆)在P点的法向量n与河边曲线的法向量m平行:

n=\lambda m

而在多元微积分中,一个函数h在某一点P的梯度是点P所在等值线(二维)或等值面(三维)的法向量,即n=\Delta h(P),所以对于f,g

n=\lambda m\Rightarrow \Delta f(P)=\lambda \Delta g(P)\Rightarrow \binom{fx}{fy}=\lambda \binom{gx}{gy}\Rightarrow fx=\lambda gx

即:fy=\lambda gy

即由相交点的性质我们得到了2个关系式(因为是二维平面,对于三维则可以得到三个关系式,以此类推),

再加上我们的约束条件:g(P)=g(x,y)=0

一共3个关系式,由线性代数中知识可知 3个关系式,3个未知量(x,y,\lambda)极有可能有唯一解,当然也不排除会出现多个解甚至无穷多解 (例如 下图 河边是一条直线,且M,C就在河边时)。

2. 从数学公式中获得灵感

仍人是问题:

3. 推广到高维空间
以上我们一直在讨论 二维的情形,下面让我们看看这个问题的高维情况: 以几何观点为例:

假设约束条件变成

学习总结:

若函数 f(x,y,z) 的变量受约束 g(x,y,z)=0限制, 函数的极值可以用下面Lagrange乘子法求出.

 

 

参考地址:https://www.zhihu.com/question/38586401

http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html

 


http://chatgpt.dhexx.cn/article/qhFdKGyi.shtml

相关文章

拉格朗日乘子法(自己总结一些要点)

主要是研究SVM算法的时候涉及到了拉格朗日乘子法,由于是大学数学的内容,开始看懂,也不高兴认真去看。后来发现绕不开,于是打算认真去研究下。主要还是百度百科(https://baike.baidu.com/item/%E6%8B%89%E6%A0%BC%E6%9C…

拉格朗日乘子法:写得很通俗的文章

拉格朗日乘子法 最近在学习 SVM 的过程中,遇到关于优化理论中拉格朗日乘子法的知识,本文是根据几篇文章总结得来的笔记。由于是刚刚接触,难免存在错误,还望指出?。另外,本文不会聊到深层次的数学推导,仅仅…

拉格朗日数乘法

拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程。新学到的知识一定要立刻记录下来,希望…

真正理解拉格朗日乘子法和KKT条件

转载自:https://www.cnblogs.com/xinchen1111/p/8804858.html 这篇博文中直观上讲解了拉格朗日乘子法和 KKT 条件,对偶问题等内容。 首先从无约束的优化问题讲起,一般就是要使一个表达式取到最小值: minf(x) m i n f ( x ) min…

【最优化】拉格朗日乘子法

拉格朗日乘子法 前面几节讲述的都是无约束优化问题的相关算法,但是在实际生活中碰到的几乎都是有约束问题模型。 等式约束的拉格朗日乘子法 算法框架 1. 问题描述 以下对约束优化问题中常出现的概念做一下简要解释: 可行解:所有满足约束条…

拉格朗日乘子法的通俗理解

拉格朗日乘子法的通俗理解 1. 举例2. 求偏导3. 拉格朗日乘子法4. 乘子 1. 举例 这里举个简单的例子吧 在家里做蛋糕,假如只计算鸡蛋和牛奶的价格 其中鸡蛋的价格为4.5¥/斤,牛奶为12¥/升,而预算刚好是20¥ 那…

拉格朗日乘数法计算技巧

昨天有位朋友让我看了一道题(见下图),方法是使用拉格朗日乘数法进行求解的,我刚开始算的时候感到非常困难,后来在答案的帮助下发现可以从x,y,z的对称性以及成比例暗示中着手,经此一题,我不由发问…

拉格朗日乘数法详解

拉格朗日乘子法 写这篇文章的动机主要是最近正在学习机器学习的课程,学到逻辑回归的时候发现使用了拉格朗日乘子法,网上也很多文章讲拉格朗日乘子法的,因此这篇文章只是记录学习的过程,希望能较为全面地展示拉格朗日乘子法的各个…

拉格朗日乘子法 KKT条件

目录 1. 拉格朗日乘子法用于最优化的原因 2. 最优化问题三种情况 2.1 无约束条件 2.2 等式约束条件:拉格朗日乘子法 2.3 不等式约束条件:KKT 3. Lagrange对偶函数 3.1 对偶函数与原问题的关系 3.2 Lagrange对偶问题 (1)弱…

拉格朗日乘子法、罚函数法、乘子罚函数法

1. 拉格朗日乘子法 1.1 无约束问题1.2 等式约束问题1.3 不等式约束问题(KKT条件)1.4 拉格朗日乘子法问题 2. 罚函数法 2.1 定义2.2 外罚函数法2.3 内罚函数法 3. 广义乘子法 3.1 等式约束广义乘子法:3.2 不等式约束广义乘子法:3.3…

对拉格朗日乘数法的理解

参考 百度百科 拉格朗日乘数法:https://www.cnblogs.com/maybe2030/p/4946256.html 拉格朗日乘数法的一种几何解释:https://zhuanlan.zhihu.com/p/368334607 拉格朗日乘子法与KKT条件:https://zhuanlan.zhihu.com/p/392900101 Karush-Kuhn-Tu…

【优化】拉格朗日(Lagrange)乘子法超简说明

本文不做数学推导,从物理意义上讲解拉格朗日乘子法。 原问题 我们要解决带有等式约束的最优化问题。为方便书写,以二维函数为例: m a x f ( x , y ) , s . t . g ( x , y ) 0 max\ f(x,y), \ \ s.t. g(x,y)0 max f(x,y), s.t.g(x,y)0 用…

【数学基础】拉格朗日乘子法

概述 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法。在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。 我们这里提到的最优化…

拉格朗日乘数法

拉格朗日乘数法是用来求条件极值的,极值问题有两类,其一,求函数在给定区间上的极值,对自变量 没有其它要求,这种极值称为无条件极值。其二,对自变量有一些附加的约束条件限制下的极值,称为 条…

如何理解拉格朗日乘子法?

1 与原点的最短距离 假如有方程: 图像是这个样子滴: 现在我们想求其上的点与原点的最短距离: 这里介绍一种解题思路。首先,与原点距离为 的点全部在半径为 的圆上: 那么,我们逐渐扩大圆的半径:…

拉格朗日乘数法 —— 通俗理解

拉格朗日乘数法(Lagrange Multiplier Method)在数学最优问题中,是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。记得以前大学高数、数模等课程多次提到过,在求解最有问题中很有用处,最近重温了下拉格朗…

拉格朗日乘子法(简单易懂的说明)

拉格朗日乘子法(Lagrange Multiplier) 之前在高中就有一直听到拉格朗日,拉格朗日是一个很牛逼哄哄的大佬。在学习SVM的时候,居然也见到了他的身影。让我们了解一下拉格朗日乘子法的具体内容。 在学习过程中,有时会遇到…

深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法。在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。 我们这里提到的最优化问题通…

拉格朗日乘子法

周志华《机器学习》如何理解拉格朗日乘子法? 1. 介绍 拉格朗日乘子法 (Lagrange multipliers)是一种寻找多元函数在一组约束下的极值的方法。通过引入拉格朗日乘子,可将有 d d d 个变量与 k k k 个约束条件的最优化问题转化为具有 d k d k dk 个变…

拉格朗日乘子法 (Lagrange multipliers)

目录 约束最优化问题等式约束的优化问题二元函数多元函数 不等式约束的优化问题 (KKT 条件)推广到多个约束拉格朗日对偶 (Dual Problem)前置知识 inf \text{inf} inf 和 sup \text {sup} sup 符号凸函数仿射函数凸优化 从广义拉格朗日函数到拉格朗日对偶函数从原问题到拉格朗日…