拉格朗日乘数法计算技巧

article/2025/8/20 17:45:23

昨天有位朋友让我看了一道题(见下图),方法是使用拉格朗日乘数法进行求解的,我刚开始算的时候感到非常困难,后来在答案的帮助下发现可以从x,y,z的对称性以及成比例暗示中着手,经此一题,我不由发问:向我这样计算能力薄弱的孩子考试遇到这种题该怎么办呢?因此,我便搜索了一些拉格朗日乘数法的一些技巧,希望有所帮助。


希望有经验的大佬们也可以指点一二🙂

参考:拉格朗日乘数法求解有什么技巧吗?

  • 技巧一:硬核做差法
    这个方法可以去除 λ \lambda λ,进而转变为不含 λ \lambda λ 的式子,再与 φ ( x , y ) = 0 \varphi(x,y)=0 φ(x,y)=0 配合从而解出 x , y x,y x,y.
    在这里插入图片描述
    对于三元函数类似,只不过这时候要作差两次
    在这里插入图片描述

  • 技巧二:单项连等法
    构造出相等的项,将其放在等号一边之后连等就可以了。该方法可以通过讨论消除 λ \lambda λ ,进而变成不含 λ \lambda λ 的连等式或直接得到 λ = 0 \lambda =0 λ=0
    在这里插入图片描述

  • 技巧三:对称作差法
    f ( x , y , z ) f(x,y,z) f(x,y,z) φ ( x , y , z ) \varphi(x,y,z) φ(x,y,z) 关于 y = x y=x y=x 对称:我们需要做的是让 L x ′ = 0 L_{x}^{'}=0 Lx=0 减去 L y ′ = 0 L_{y}^{'}=0 Ly=0,得到的式子可以变形成: ( y − x ) ( 整 式 ) = 0 (y-x)(整式)=0 (yx)()=0 ,从而简化计算。同时如果其中有 y ≠ x y≠x y=x 的解,则将它的 x x x y y y 互换后则是另一个解。
    在这里插入图片描述

  • 技巧四:行列式求解法
    如果求出来的 L x ′ = 0 L_{x}^{'}=0 Lx=0, L y ′ = 0 L_{y}^{'}=0 Ly=0 , L z ′ = 0 L_{z}^{'}=0 Lz=0 组成的为线性方程组,则可以根据线性代数知识解决
    在这里插入图片描述
    这里由于 x 2 + y 2 + z 2 − 10 = 0 x^{2}+y^{2}+z^{2}-10=0 x2+y2+z210=0的存在,将导致 x , y , z x,y,z x,y,z 不可能同时为 0,因此 (1)~(3) 式所组成的线性方程组一定有非 0 解,因此就是系数行列式为 0,即可将 λ \lambda λ 解出,减少未知数的个数,进而容易求解。

  • 技巧五:齐次构造法
    这里我还不太明白,只知道将极值转化为 λ \lambda λ 极值了,后期强化的时候再来看这个方法
    在这里插入图片描述

  • 技巧六:目标函数转换法
    这个我也不懂/(ㄒoㄒ)/~~
    在这里插入图片描述
    注意:

  • 技巧是死的,人是活的,在解题中要灵活的运用技巧。

  • 解题时,有可能会出现增解的情况,平时解出极值点之后,建议再带点到每个方程中演算一下。这样也能检查自己的结果是否正确,是一个比较好的习惯。


http://chatgpt.dhexx.cn/article/3sDyjJt9.shtml

相关文章

拉格朗日乘数法详解

拉格朗日乘子法 写这篇文章的动机主要是最近正在学习机器学习的课程,学到逻辑回归的时候发现使用了拉格朗日乘子法,网上也很多文章讲拉格朗日乘子法的,因此这篇文章只是记录学习的过程,希望能较为全面地展示拉格朗日乘子法的各个…

拉格朗日乘子法 KKT条件

目录 1. 拉格朗日乘子法用于最优化的原因 2. 最优化问题三种情况 2.1 无约束条件 2.2 等式约束条件:拉格朗日乘子法 2.3 不等式约束条件:KKT 3. Lagrange对偶函数 3.1 对偶函数与原问题的关系 3.2 Lagrange对偶问题 (1)弱…

拉格朗日乘子法、罚函数法、乘子罚函数法

1. 拉格朗日乘子法 1.1 无约束问题1.2 等式约束问题1.3 不等式约束问题(KKT条件)1.4 拉格朗日乘子法问题 2. 罚函数法 2.1 定义2.2 外罚函数法2.3 内罚函数法 3. 广义乘子法 3.1 等式约束广义乘子法:3.2 不等式约束广义乘子法:3.3…

对拉格朗日乘数法的理解

参考 百度百科 拉格朗日乘数法:https://www.cnblogs.com/maybe2030/p/4946256.html 拉格朗日乘数法的一种几何解释:https://zhuanlan.zhihu.com/p/368334607 拉格朗日乘子法与KKT条件:https://zhuanlan.zhihu.com/p/392900101 Karush-Kuhn-Tu…

【优化】拉格朗日(Lagrange)乘子法超简说明

本文不做数学推导,从物理意义上讲解拉格朗日乘子法。 原问题 我们要解决带有等式约束的最优化问题。为方便书写,以二维函数为例: m a x f ( x , y ) , s . t . g ( x , y ) 0 max\ f(x,y), \ \ s.t. g(x,y)0 max f(x,y), s.t.g(x,y)0 用…

【数学基础】拉格朗日乘子法

概述 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法。在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。 我们这里提到的最优化…

拉格朗日乘数法

拉格朗日乘数法是用来求条件极值的,极值问题有两类,其一,求函数在给定区间上的极值,对自变量 没有其它要求,这种极值称为无条件极值。其二,对自变量有一些附加的约束条件限制下的极值,称为 条…

如何理解拉格朗日乘子法?

1 与原点的最短距离 假如有方程: 图像是这个样子滴: 现在我们想求其上的点与原点的最短距离: 这里介绍一种解题思路。首先,与原点距离为 的点全部在半径为 的圆上: 那么,我们逐渐扩大圆的半径:…

拉格朗日乘数法 —— 通俗理解

拉格朗日乘数法(Lagrange Multiplier Method)在数学最优问题中,是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。记得以前大学高数、数模等课程多次提到过,在求解最有问题中很有用处,最近重温了下拉格朗…

拉格朗日乘子法(简单易懂的说明)

拉格朗日乘子法(Lagrange Multiplier) 之前在高中就有一直听到拉格朗日,拉格朗日是一个很牛逼哄哄的大佬。在学习SVM的时候,居然也见到了他的身影。让我们了解一下拉格朗日乘子法的具体内容。 在学习过程中,有时会遇到…

深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法。在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。 我们这里提到的最优化问题通…

拉格朗日乘子法

周志华《机器学习》如何理解拉格朗日乘子法? 1. 介绍 拉格朗日乘子法 (Lagrange multipliers)是一种寻找多元函数在一组约束下的极值的方法。通过引入拉格朗日乘子,可将有 d d d 个变量与 k k k 个约束条件的最优化问题转化为具有 d k d k dk 个变…

拉格朗日乘子法 (Lagrange multipliers)

目录 约束最优化问题等式约束的优化问题二元函数多元函数 不等式约束的优化问题 (KKT 条件)推广到多个约束拉格朗日对偶 (Dual Problem)前置知识 inf \text{inf} inf 和 sup \text {sup} sup 符号凸函数仿射函数凸优化 从广义拉格朗日函数到拉格朗日对偶函数从原问题到拉格朗日…

拉格朗日乘子

1,拉格朗日乘子(lagrange multiplier),又叫拉氏乘子或拉格朗日乘数。它是出现在拉格朗日乘数法中的概念。 拉格朗日乘数法可以解决多变量函数在其变量受到一个或多个约束条件时求极值的问题。 它可以将含有n个变量的函数(该函数的…

机器学习中的数学——拉格朗日乘子法(一):等式约束的拉格朗日乘子法

分类目录:《机器学习中的数学》总目录 相关文章: 拉格朗日乘子法(一):等式约束的拉格朗日乘子法 拉格朗日乘子法(二):不等式约束与KKT条件 拉格朗日乘子法是一种寻找多元函数在一组约…

拉格朗日乘子法详解

一、拉格朗日乘子法简介 拉格朗日乘子法的应用十分广泛,它是SVM的理论基础,是凸优化的重要研究部分。它用于求解约束条件下的极值问题,过程简单巧妙,也是各类考试的常考题型。然而,拉格朗日乘子法的原理我却一直模模糊…

日志服务与日志分析工具

系统日志生成服务 功能: 日志服务是根据日志配置文件进行提供相应的功能服务,对于各种服务的信息等级的设定将不同服务的不懂等级信息记录在不同的文件里面。 日志管理服务分类: 1.rsyslogd 普通日志管理服务 采集各种服务产生的信息根据…

Web日志分析

目录 1. Web日志 2. 日志分析技巧 常用分析工具: Apache日志分析技巧: 3. 日志分析案例 1、定位攻击源 2、搜索相关日志记录 3、对找到的访问日志进行解读,攻击者的访问路径..... 4. 日志统计分析技巧 1. Web日志 Web访问日志记录了W…

logparser日志分析详解

Logparser是微软的一款日志分析工具,使用方便功能强大。 支持的日志类型: IISW3C,NCSA,IIS,IISODBC,BIN,IISMSID,HTTPERR,URLSCAN,CSV,TSV,W3C,XML,EVT, ETW,NETMON, REG, ADS, TEXTLINE, TEXTWORD, FS,COM 可输出的文件类型 CSV, TSV, XML, DATAGRID, C…

(分析日志)

日志的分析也是一个很大的概念,可能对于运维和安全人员关注的是系统的所有日志,包括访问日志、系统监测的日志等,但是开发人员对于日志更多的是: 监控系统运行错误,并获取错误时的相关数据包记录重要的信息&#xff0…