拉格朗日乘子法(自己总结一些要点)

article/2025/8/20 17:40:12

主要是研究SVM算法的时候涉及到了拉格朗日乘子法,由于是大学数学的内容,开始看懂,也不高兴认真去看。后来发现绕不开,于是打算认真去研究下。主要还是百度百科(https://baike.baidu.com/item/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E4%B9%98%E5%AD%90%E6%B3%95/1946079)的解释提点到了我,而且我发现这些公式如果不想深究的话,只需按照公式的使用方法去处理计算即可,而不必深究公式是如何得出的。

       基本的拉格朗日乘子法就是求函数f(x1,x2,...)在约束条件g(x1,x2,...)=0下的极值的方法。其主要思想是将约束条件函数与原函数联立,从而求出使原函数取得极值的各个变量的解。

        对于具有l个等式约束的n维优化问题,把原目标函数 改造成为如下形式的新的目标函数:(为什么可以这么改造可以不用管,就是拉格朗日规定这么做的)

                                                                         

式中的  就是原目标函数  的等式约束条件,而待定系数  称为拉格朗日乘子。这种方法称为拉格朗日乘子法。在极值点处,有 和  ,共有n+l个方程,足以算出这n+l个变量,此法也称为升维法。 

       拉格朗日乘子法是一种经典的求解条件极值的解析方法,可将所有约束的优化模型问题转化为无约束极值问题的求解。一般带不等式约束的最优化问题求解如下式:

                                                                                

拉格朗日乘子法是用于变量无关的是常数  分别乘各约束函数 并与目标函数相加得到如下的拉格朗日函数:

                                                                           

,式中:  为自变量; 为拉格朗日乘子量;  为松弛变量。则 

 处取极值的必要条件为:(即对每个变量求偏导,令导数=0

                                                                            

,依据上式求得  即为最优解。

主要计算过程:

1.假设需要求极值的目标函数(objective function)为f(x,y),限制条件为φ(x,y)=M

2.设

3.定义一个新函数

4.用偏导数方法列出方程:

5.求出上述导数=0时,x,y,λ的值,代入即可得到目标函数的极值。

举一个例子:来自https://blog.csdn.net/lijil168/article/details/69395023

 一般情况下,最优化问题会碰到一下三种情况:

(1)无约束条件

  这是最简单的情况,解决方法通常是函数对变量求导,令求导函数等于0的点可能是极值点。将结果带回原函数进行验证即可。

(2)等式约束条件

      设目标函数为f(x),约束条件为h_k(x),形如:

        s.t. 表示subject to ,“受限于”的意思,l表示有l个约束条件。

        

   则解决方法是消元法或者拉格朗日法。消元法比较简单不在赘述,这里主要讲拉格朗日法,因为后面提到的KKT条件是对拉格朗日乘子法的一种泛化。

   例如给定椭球:

               

    求这个椭球的内接长方体的最大体积。这个问题实际上就是条件极值问题,即在条件      下,求的最大值。

    当然这个问题实际可以先根据条件消去 z (消元法),然后带入转化为无条件极值问题来处理。但是有时候这样做很困难,甚至是做不到的,这时候就需要用拉格朗日乘数法了。  

    首先定义拉格朗日函数F(x):

          ( 其中λk是各个约束条件的待定系数。)                                                           

        然后解变量的偏导方程:

          ......,

   如果有l个约束条件,就应该有l+1个方程。求出的方程组的解就可能是最优化值(高等数学中提到的极值),将结果带回原方程验证就可得到解。

   回到上面的题目,通过拉格朗日乘数法将问题转化为

         

   对求偏导得到

          

   联立前面三个方程得到,带入第四个方程解之

          

   带入解得最大体积为:

          

  (3)不等式约束条件

看原文


http://chatgpt.dhexx.cn/article/Yi0den2Z.shtml

相关文章

拉格朗日乘子法:写得很通俗的文章

拉格朗日乘子法 最近在学习 SVM 的过程中,遇到关于优化理论中拉格朗日乘子法的知识,本文是根据几篇文章总结得来的笔记。由于是刚刚接触,难免存在错误,还望指出?。另外,本文不会聊到深层次的数学推导,仅仅…

拉格朗日数乘法

拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程。新学到的知识一定要立刻记录下来,希望…

真正理解拉格朗日乘子法和KKT条件

转载自:https://www.cnblogs.com/xinchen1111/p/8804858.html 这篇博文中直观上讲解了拉格朗日乘子法和 KKT 条件,对偶问题等内容。 首先从无约束的优化问题讲起,一般就是要使一个表达式取到最小值: minf(x) m i n f ( x ) min…

【最优化】拉格朗日乘子法

拉格朗日乘子法 前面几节讲述的都是无约束优化问题的相关算法,但是在实际生活中碰到的几乎都是有约束问题模型。 等式约束的拉格朗日乘子法 算法框架 1. 问题描述 以下对约束优化问题中常出现的概念做一下简要解释: 可行解:所有满足约束条…

拉格朗日乘子法的通俗理解

拉格朗日乘子法的通俗理解 1. 举例2. 求偏导3. 拉格朗日乘子法4. 乘子 1. 举例 这里举个简单的例子吧 在家里做蛋糕,假如只计算鸡蛋和牛奶的价格 其中鸡蛋的价格为4.5¥/斤,牛奶为12¥/升,而预算刚好是20¥ 那…

拉格朗日乘数法计算技巧

昨天有位朋友让我看了一道题(见下图),方法是使用拉格朗日乘数法进行求解的,我刚开始算的时候感到非常困难,后来在答案的帮助下发现可以从x,y,z的对称性以及成比例暗示中着手,经此一题,我不由发问…

拉格朗日乘数法详解

拉格朗日乘子法 写这篇文章的动机主要是最近正在学习机器学习的课程,学到逻辑回归的时候发现使用了拉格朗日乘子法,网上也很多文章讲拉格朗日乘子法的,因此这篇文章只是记录学习的过程,希望能较为全面地展示拉格朗日乘子法的各个…

拉格朗日乘子法 KKT条件

目录 1. 拉格朗日乘子法用于最优化的原因 2. 最优化问题三种情况 2.1 无约束条件 2.2 等式约束条件:拉格朗日乘子法 2.3 不等式约束条件:KKT 3. Lagrange对偶函数 3.1 对偶函数与原问题的关系 3.2 Lagrange对偶问题 (1)弱…

拉格朗日乘子法、罚函数法、乘子罚函数法

1. 拉格朗日乘子法 1.1 无约束问题1.2 等式约束问题1.3 不等式约束问题(KKT条件)1.4 拉格朗日乘子法问题 2. 罚函数法 2.1 定义2.2 外罚函数法2.3 内罚函数法 3. 广义乘子法 3.1 等式约束广义乘子法:3.2 不等式约束广义乘子法:3.3…

对拉格朗日乘数法的理解

参考 百度百科 拉格朗日乘数法:https://www.cnblogs.com/maybe2030/p/4946256.html 拉格朗日乘数法的一种几何解释:https://zhuanlan.zhihu.com/p/368334607 拉格朗日乘子法与KKT条件:https://zhuanlan.zhihu.com/p/392900101 Karush-Kuhn-Tu…

【优化】拉格朗日(Lagrange)乘子法超简说明

本文不做数学推导,从物理意义上讲解拉格朗日乘子法。 原问题 我们要解决带有等式约束的最优化问题。为方便书写,以二维函数为例: m a x f ( x , y ) , s . t . g ( x , y ) 0 max\ f(x,y), \ \ s.t. g(x,y)0 max f(x,y), s.t.g(x,y)0 用…

【数学基础】拉格朗日乘子法

概述 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法。在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。 我们这里提到的最优化…

拉格朗日乘数法

拉格朗日乘数法是用来求条件极值的,极值问题有两类,其一,求函数在给定区间上的极值,对自变量 没有其它要求,这种极值称为无条件极值。其二,对自变量有一些附加的约束条件限制下的极值,称为 条…

如何理解拉格朗日乘子法?

1 与原点的最短距离 假如有方程: 图像是这个样子滴: 现在我们想求其上的点与原点的最短距离: 这里介绍一种解题思路。首先,与原点距离为 的点全部在半径为 的圆上: 那么,我们逐渐扩大圆的半径:…

拉格朗日乘数法 —— 通俗理解

拉格朗日乘数法(Lagrange Multiplier Method)在数学最优问题中,是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。记得以前大学高数、数模等课程多次提到过,在求解最有问题中很有用处,最近重温了下拉格朗…

拉格朗日乘子法(简单易懂的说明)

拉格朗日乘子法(Lagrange Multiplier) 之前在高中就有一直听到拉格朗日,拉格朗日是一个很牛逼哄哄的大佬。在学习SVM的时候,居然也见到了他的身影。让我们了解一下拉格朗日乘子法的具体内容。 在学习过程中,有时会遇到…

深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法。在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。 我们这里提到的最优化问题通…

拉格朗日乘子法

周志华《机器学习》如何理解拉格朗日乘子法? 1. 介绍 拉格朗日乘子法 (Lagrange multipliers)是一种寻找多元函数在一组约束下的极值的方法。通过引入拉格朗日乘子,可将有 d d d 个变量与 k k k 个约束条件的最优化问题转化为具有 d k d k dk 个变…

拉格朗日乘子法 (Lagrange multipliers)

目录 约束最优化问题等式约束的优化问题二元函数多元函数 不等式约束的优化问题 (KKT 条件)推广到多个约束拉格朗日对偶 (Dual Problem)前置知识 inf \text{inf} inf 和 sup \text {sup} sup 符号凸函数仿射函数凸优化 从广义拉格朗日函数到拉格朗日对偶函数从原问题到拉格朗日…

拉格朗日乘子

1,拉格朗日乘子(lagrange multiplier),又叫拉氏乘子或拉格朗日乘数。它是出现在拉格朗日乘数法中的概念。 拉格朗日乘数法可以解决多变量函数在其变量受到一个或多个约束条件时求极值的问题。 它可以将含有n个变量的函数(该函数的…