tf.layers.dense()的用法

article/2025/9/15 1:37:50

dense :全连接层  相当于添加一个层

函数如下:

 

tf.layers.dense(

    inputs,

    units,

    activation=None,

    use_bias=True,

    kernel_initializer=None,  ##卷积核的初始化器

    bias_initializer=tf.zeros_initializer(),  ##偏置项的初始化器,默认初始化为0

    kernel_regularizer=None,    ##卷积核的正则化,可选

    bias_regularizer=None,    ##偏置项的正则化,可选

    activity_regularizer=None,   ##输出的正则化函数

    kernel_constraint=None,   

    bias_constraint=None,

    trainable=True,

    name=None,  ##层的名字

    reuse=None  ##是否重复使用参数

)

部分参数解释:

inputs:输入该网络层的数据

units:输出的维度大小,改变inputs的最后一维

activation:激活函数,即神经网络的非线性变化

use_bias:使用bias为True(默认使用),不用bias改成False即可,是否使用偏置项

trainable=True:表明该层的参数是否参与训练。如果为真则变量加入到图集合中

 GraphKeys.TRAINABLE_VARIABLES (see tf.Variable)

在其他网站上看到的使用现象

dense1 = tf.layers.dense(inputs=pool3, units=1024, activation=tf.nn.relu,                                

                                           kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))

#全连接层

dense1 = tf.layers.dense(inputs=pool3, units=1024, activation=tf.nn.relu)

dense2= tf.layers.dense(inputs=dense1, units=512, activation=tf.nn.relu)

logits= tf.layers.dense(inputs=dense2, units=10, activation=None)

示例:

输出的结果如下所示:

可以看到输出结果的最后一维度就等于神经元的个数即units的数值(神经元的个数)

在网络中使用全连接层的作用是什么呢?这一点还是不太清楚,希望知道的可以帮忙解释一下,互相交流一下

  • 全连接层:通常在CNN的尾部进行重新拟合,减少特征信息的损失

http://chatgpt.dhexx.cn/article/q7vbaXoH.shtml

相关文章

DenseNet与ResNet

ResNet(深度残差网络) 深度残差网络 DenseNet 采用密集连接机制,即互相连接所有的层,每个层都会与前面所有层在channel维度上连接在一起,实现特征重用,作为下一层的输入。 这样不但缓解了梯度消失的现象…

DenseNet解读

Densely Connected Convolutional Networks ,作者清华姚班的刘壮,获得cvpr 2017 best paper。非常值得阅读。 DenseNet优势: (1)解决了深层网络的梯度消失问题 (2)加强了特征的传播 (3&#xff…

MYSQL实现排名函数RANK,DENSE_RANK和ROW_NUMBER

文章目录 1. 排名分类1.1 区别RANK,DENSE_RANK和ROW_NUMBER1.2 分组排名 2. 准备数据3. 不分组排名3.1 连续排名3.2 并列跳跃排名3.3 并列连续排名 4. 分组排名4.1 分组连续排名4.2 分组并列跳跃排名4.3 分组并列连续排名 在MYSQL的最新版本MYSQL8已经支持了排名函数…

tf.keras.layers.Dense函数

函数原型 tf.keras.layers.Dense(units, activationNone, use_biasTrue,kernel_initializerglorot_uniform,bias_initializerzeros, kernel_regularizerNone,bias_regularizerNone,activity_regularizerNone, kernel_constraintNone,bias_constraintNone, **kwargs )函数说明 …

DenseNet模型

《Densely Connected Convolutional Networks》阅读笔记 代码地址:https://github.com/liuzhuang13/DenseNet 首先看一张图: 稠密连接:每层以之前层的输出为输入,对于有L层的传统网络,一共有 L 个连接,对于DenseNe…

深入理解 keras 中 Dense 层参数

目录 引言深入理解 Dense 层的用法查看参数输入尺寸输出尺寸示例:用法完整示例示例一: 最小网络示例二:多维度数据示例三:特殊情况,待讨论 附录 引言 大家或许已经对深度学习不陌生了。不管是养家糊口工作还是科研学习早日毕业&a…

Keras大法(4)——Dense方法详解

Keras大法(4)——Dense方法详解 (一)keras.layers.Dense方法(二)使用示例(三)总 结 (一)keras.layers.Dense方法 在开始定义模型之前,我们有必要…

dense层、激活函数、输出层设计

Tensorflow——tf.layers.dense dense:全连接层 对于层方式的实现的时候! layers.Dense(units,activation)函数一般只需要指定输出节点数Units和激活函数类型即可。输入节点数将根据第一次运算时输入的shape确定,同时输入、输出节点自动创建…

Dense层

1 常见参数 model.add(Dense(units, #输出的大小(神经元个数)activationNone, #激活函数use_biasTrue, #是否添加偏置kernel_initializerglorot_uniform, #权重矩阵初始化bias_initializerzeros, #偏置初始化kernel_regularizerNone, #权重矩阵的正则函…

Keras中dense层原理及用法解释

文章目录 一.全连接层Fully Connection作用二.API解释2.1 示例1:dense层为输入层2.2 示例2:dense层为中间层2.3 示例3:dense层为输出层 三.实现过程四.数学解释 一.全连接层Fully Connection作用 全连接的核心操作就是矩阵向量乘积 y W ∗…

矩阵运算实现求样本与样本之间欧式距离

前言 最近需要写关于kmeans的一些小程序,需要计算距离,直接写for循环又特别慢,再要是样本多一点,那简直了。细细一想,需要计算距离的地方还真不少,kmeans、KNN、图等等。 1. 理论指导 小学学过的公式&am…

实现两个点集的欧式距离和cos距离和索引值寻找(含有两种解法,for循环和矩阵操作)

一.计算欧式距离 1,直接for循环 两个点集points1,points2,用dist来存储距离 points1np.array([[1,2],[3,4]]) points2 np.array([[5, 6],[7,8]]) dist np.zeros(shape[points1.shape[0],points2.shape[0]]) for i in range(points1.sha…

计算样本欧式距离——python

任务描述 本关实现一个函数来计算欧几里得距离。 相关知识 通常数据集中的样本都可描述为一个 n 维向量 。每一个维度代表样本的一个属性。比如,对于用户 x 而言,其属性可能是收入、年龄、工作时间等,对于电影而言,其属性可能…

什么是范数,及其对应的 “曼哈顿距离“、“欧式距离“、“闵氏距离“、“切比雪夫距离“

什么是范数,及其对应的 "曼哈顿距离"、"欧式距离"、"闵氏距离"、"切比雪夫距离" 一、什么是范数二、欧式距离(对应L2范数)三、曼哈顿距离(对应L1范数)三、闵氏距离&#xff0…

计算两个矩阵的行向量之间的欧式距离

1 问题描述 矩阵P的大小为[m, d] 用行向量表示为P1, P2,...,Pm 矩阵C的大小为[n, d] 用行向量表示为C1, C2,...,Cn 求矩阵P的每个行向量与矩阵C的每个行向量的欧氏距离 典型的例子是KNN算法应用于二维的点的聚类时,求取点与点之间的欧式距离时的情况。 2 …

标准化欧式距离

标准化欧式距离 在对长方体区域进行聚类的时候,普通的距离无法满足要求。 按照普通的距离聚类出的大多是圆形的区域,这时候要采用标准的欧式距离。 两个 n 维向量 a(X11,X12,X13,…X1n)与b(X21,X22,…X2n) 间的标准化欧氏距离公式为: 其中S…

Java实现的基于欧式距离的聚类算法的Kmeans作业

Kmeans作业 环境配置 java环境,使用原生的Java UI组件JPanel和JFrame 算法原理 基于欧式距离的聚类算法,其认为两个目标的距离越近,相似度越大。 该实验产生的点为二维空间中的点。 欧式距离 n维空间中的两个点X,Y d i s t…

python+dlib的欧式距离算法进行人脸识别

资源下载地址:https://download.csdn.net/download/sheziqiong/85738944 资源下载地址:https://download.csdn.net/download/sheziqiong/85738944 人脸识别的主要算法 其核心算法是 欧式距离算法使用该算法计算两张脸的面部特征差异,一般在…

计算欧式距离和余弦相似度

本文介绍Python计算欧式距离和余弦相似度。为了余弦相似度需要使用欧式距离,我们首先介绍欧式距离。 欧式距离 欧式距离标识两个向量之间的距离,计算公式如下: 欧式距离 Σ ( A i − B i ) 2 \sqrt{Σ(A_i-B_i)^2} Σ(Ai​−Bi​)2 ​ …

欧式距离和马式距离的区别

前言 为什么要讨论这两个距离之间的区别? 因为,距离函数的选择对数据挖掘算法的效果具有很大的影响,使用错误的距离函数对挖掘过程非常有害。有时候,语义非常相似的对象被认为不相似,而语义不相似的对象却被认为是相…