深入理解 keras 中 Dense 层参数

article/2025/9/14 4:32:55

目录

  • 引言
  • 深入理解 Dense 层的用法
    • 查看参数
    • 输入尺寸
    • 输出尺寸
    • 示例:
    • 用法完整示例
      • 示例一: 最小网络
      • 示例二:多维度数据
      • 示例三:特殊情况,待讨论
  • 附录

引言

大家或许已经对深度学习不陌生了。不管是养家糊口工作还是科研学习早日毕业,为了生活,我们可能不得不去深入理解深度学习方面的知识。对于现成的深度学习框架,已经有很多教程,一般都是再强调用法,却很少有理论与实战结合的示例。
在此,我们将抛砖引玉,记录一些关于 keras 中 Dense 层的简单使用。

深入理解 Dense 层的用法

keras.layers.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

Dense layer 就是常提到和用到的全连接层 。Dense 实现的操作为:output = activation(dot(input, kernel) + bias) 其中 activation 是按逐个元素计算的激活函数,kernel 是由网络层创建的权值矩阵,以及 bias 是其创建的偏置向量 (只在 use_bias=True 时才有用)。

注意: 如果该层的输入的秩大于2,那么它首先被展平然后 再计算与 kernel 的点乘。

查看参数

units: 正整数,输出空间维度。
activation: 激活函数 (详见 activations)。 若不指定,则不使用激活函数 (即,「线性」激活: a(x) = x)。
use_bias: 布尔值,该层是否使用偏置向量。
kernel_initializer: kernel 权值矩阵的初始化器 (详见 initializers)。
bias_initializer: 偏置向量的初始化器 (see initializers).
kernel_regularizer: 运用到 kernel 权值矩阵的正则化函数 (详见 regularizer)。
bias_regularizer: 运用到偏置向的的正则化函数 (详见 regularizer)。
activity_regularizer: 运用到层的输出的正则化函数 (它的 "activation")(详见 regularizer)。
kernel_constraint: 运用到 kernel 权值矩阵的约束函数 (详见 constraints)。
bias_constraint: 运用到偏置向量的约束函数 (详见 constraints)

输入尺寸

nD 张量,尺寸: (batch_size, …, input_dim)。 最常见的情况是一个尺寸为 (batch_size, input_dim) 的 2D 输入。

输出尺寸

nD 张量,尺寸: (batch_size, …, units)。 例如,对于尺寸为 (batch_size, input_dim) 的 2D 输入, 输出的尺寸为 (batch_size, units)。

示例:

# 作为 Sequential 模型的第一层,需要指定输入维度。可以为 input_shape=(16,) 或者 input_dim=16,这两者是等价的。
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
# 现在模型就会以尺寸为 (*, 16) 的数组作为输入,
# 其输出数组的尺寸为 (*, 32)# 在第一层之后,就不再需要指定输入的尺寸了:
model.add(Dense(32))

用法完整示例

示例一: 最小网络

仅有一个参数

import keras
from keras.layers import Dense
model = keras.models.Sequential()
model.add(Dense(1, use_bias=False, input_shape=(1,), name='Dense_ly'))  # 仅有的1个权重在这里
model.compile(loss='mse', optimizer='adam')
# endmodel.summary()  # 简单查看网络结构# 画图查看网络结构
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
display(SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg')))# 创建数据begin
import numpy as np
data_input = np.random.normal(size=1000000).reshape(-1,1)  # 训练数据
data_label = -(data_input)  # 数据标签
# endprint('模型随机权重分配为:%s\n' % (model.layers[0].get_weights()))  # 检查随机初始化的权重大小model.fit(data_input, data_label)  # 对创建的数据用创建的网络进行训练print('模型进行预测:%s\n' % (model.predict(np.array([2.5]))))  # 利用训练好的模型进行预测print('训练完成后权重分配为:%s\n' % (model.layers[0].get_weights()))  # 再次查看训练好的模型中的权重值

示例一运行结果

示例二:多维度数据

多维数据训练,此处为2个变量

import keras
from keras.layers import Dense
model = keras.models.Sequential()
model.add(Dense(1, use_bias=False, input_shape=(2,), name='Dense_ly'))  # 仅有的1个权重在这里
model.compile(loss='mse', optimizer='adam')
# endmodel.summary()  # 简单查看网络结构# 画图查看网络结构
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
display(SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg')))# 创建数据begin
import numpy as np
data_input = np.random.normal(size=1000000).reshape(-1,2)  # 训练数据
data_label = -(data_input[:,1])  # 数据标签。 PS:注意,这里变了。这里预测的标签仅仅是后一个维度的数据哦!
# endprint('模型随机权重分配为:%s\n' % (model.layers[0].get_weights()))  # 检查随机初始化的权重大小model.fit(data_input, data_label)  # 对创建的数据用创建的网络进行训练print('模型进行预测:%s\n' % (model.predict(np.array([[2.5, 13.5]]))))  # 利用训练好的模型进行预测。 PS:注意,这里变了print('训练完成后权重分配为:%s\n' % (model.layers[0].get_weights()))  # 再次查看训练好的模型中的权重值

示例二

示例三:特殊情况,待讨论

这个参数是一个二位矩阵,先留待查看研习

import keras
from keras.layers import Dense
model = keras.models.Sequential()
model.add(Dense(2, use_bias=False, input_shape=(2,), name='Dense_ly'))  # 仅有的1个权重在这里
model.compile(loss='mse', optimizer='adam')
# endmodel.summary()  # 简单查看网络结构# 画图查看网络结构
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
display(SVG(model_to_dot(model,show_shapes=True).create(prog='dot', format='svg')))# 创建数据begin
import numpy as np
data_input = np.random.normal(size=1000000).reshape(-1,2)  # 训练数据
data_label = -(data_input)  # 数据标签。 PS:注意,这里变了
# endprint('模型随机权重分配为:%s\n' % (model.layers[0].get_weights()))  # 检查随机初始化的权重大小model.fit(data_input, data_label)  # 对创建的数据用创建的网络进行训练print('模型进行预测:%s\n' % (model.predict(np.array([[2.5, 13.5]]))))  # 利用训练好的模型进行预测。 PS:注意,这里变了print('训练完成后权重分配为:%s\n' % (model.layers[0].get_weights()))  # 再次查看训练好的模型中的权重值

示例三

附录

配合以下资源食用更香:

  • 面向初学者的最小神经网络

  • 理解1D、2D、3D卷积神经网络的概念


http://chatgpt.dhexx.cn/article/mlwrv7bo.shtml

相关文章

Keras大法(4)——Dense方法详解

Keras大法(4)——Dense方法详解 (一)keras.layers.Dense方法(二)使用示例(三)总 结 (一)keras.layers.Dense方法 在开始定义模型之前,我们有必要…

dense层、激活函数、输出层设计

Tensorflow——tf.layers.dense dense:全连接层 对于层方式的实现的时候! layers.Dense(units,activation)函数一般只需要指定输出节点数Units和激活函数类型即可。输入节点数将根据第一次运算时输入的shape确定,同时输入、输出节点自动创建…

Dense层

1 常见参数 model.add(Dense(units, #输出的大小(神经元个数)activationNone, #激活函数use_biasTrue, #是否添加偏置kernel_initializerglorot_uniform, #权重矩阵初始化bias_initializerzeros, #偏置初始化kernel_regularizerNone, #权重矩阵的正则函…

Keras中dense层原理及用法解释

文章目录 一.全连接层Fully Connection作用二.API解释2.1 示例1:dense层为输入层2.2 示例2:dense层为中间层2.3 示例3:dense层为输出层 三.实现过程四.数学解释 一.全连接层Fully Connection作用 全连接的核心操作就是矩阵向量乘积 y W ∗…

矩阵运算实现求样本与样本之间欧式距离

前言 最近需要写关于kmeans的一些小程序,需要计算距离,直接写for循环又特别慢,再要是样本多一点,那简直了。细细一想,需要计算距离的地方还真不少,kmeans、KNN、图等等。 1. 理论指导 小学学过的公式&am…

实现两个点集的欧式距离和cos距离和索引值寻找(含有两种解法,for循环和矩阵操作)

一.计算欧式距离 1,直接for循环 两个点集points1,points2,用dist来存储距离 points1np.array([[1,2],[3,4]]) points2 np.array([[5, 6],[7,8]]) dist np.zeros(shape[points1.shape[0],points2.shape[0]]) for i in range(points1.sha…

计算样本欧式距离——python

任务描述 本关实现一个函数来计算欧几里得距离。 相关知识 通常数据集中的样本都可描述为一个 n 维向量 。每一个维度代表样本的一个属性。比如,对于用户 x 而言,其属性可能是收入、年龄、工作时间等,对于电影而言,其属性可能…

什么是范数,及其对应的 “曼哈顿距离“、“欧式距离“、“闵氏距离“、“切比雪夫距离“

什么是范数,及其对应的 "曼哈顿距离"、"欧式距离"、"闵氏距离"、"切比雪夫距离" 一、什么是范数二、欧式距离(对应L2范数)三、曼哈顿距离(对应L1范数)三、闵氏距离&#xff0…

计算两个矩阵的行向量之间的欧式距离

1 问题描述 矩阵P的大小为[m, d] 用行向量表示为P1, P2,...,Pm 矩阵C的大小为[n, d] 用行向量表示为C1, C2,...,Cn 求矩阵P的每个行向量与矩阵C的每个行向量的欧氏距离 典型的例子是KNN算法应用于二维的点的聚类时,求取点与点之间的欧式距离时的情况。 2 …

标准化欧式距离

标准化欧式距离 在对长方体区域进行聚类的时候,普通的距离无法满足要求。 按照普通的距离聚类出的大多是圆形的区域,这时候要采用标准的欧式距离。 两个 n 维向量 a(X11,X12,X13,…X1n)与b(X21,X22,…X2n) 间的标准化欧氏距离公式为: 其中S…

Java实现的基于欧式距离的聚类算法的Kmeans作业

Kmeans作业 环境配置 java环境,使用原生的Java UI组件JPanel和JFrame 算法原理 基于欧式距离的聚类算法,其认为两个目标的距离越近,相似度越大。 该实验产生的点为二维空间中的点。 欧式距离 n维空间中的两个点X,Y d i s t…

python+dlib的欧式距离算法进行人脸识别

资源下载地址:https://download.csdn.net/download/sheziqiong/85738944 资源下载地址:https://download.csdn.net/download/sheziqiong/85738944 人脸识别的主要算法 其核心算法是 欧式距离算法使用该算法计算两张脸的面部特征差异,一般在…

计算欧式距离和余弦相似度

本文介绍Python计算欧式距离和余弦相似度。为了余弦相似度需要使用欧式距离,我们首先介绍欧式距离。 欧式距离 欧式距离标识两个向量之间的距离,计算公式如下: 欧式距离 Σ ( A i − B i ) 2 \sqrt{Σ(A_i-B_i)^2} Σ(Ai​−Bi​)2 ​ …

欧式距离和马式距离的区别

前言 为什么要讨论这两个距离之间的区别? 因为,距离函数的选择对数据挖掘算法的效果具有很大的影响,使用错误的距离函数对挖掘过程非常有害。有时候,语义非常相似的对象被认为不相似,而语义不相似的对象却被认为是相…

马氏距离(Mahalanobis Distance)与欧式距离

马氏距离(Mahalanobis Distance)是度量学习中一种常用的距离指标,同欧氏距离、曼哈顿距离、汉明距离等一样被用作评定数据之间的相似度指标。但却可以应对高维线性分布的数据中各维度间非独立同分布的问题。 什么是马氏距离 马氏距离(Mahalanobis Distance)是一种距…

欧式距离分割

主要函数: [labels, numClusters] pcsegdist(ptCloud, minDistance) 欧式聚类是一种基于欧式距离的聚类算法 ptCloud pcread(maize.pcd);%两个不同簇之间最小距离 minDistance 0.06%执行欧式距离分割 [labels, numClusters] pcsegdist(ptCloud, minDistance)…

欧式距离转为百分比

1. 说明 项目中生成了每个数据的2048维的向量,计算出不同数据之间的欧式距离值。把这些欧式距离转化为百分比,利于查看。 2. 欧式距离值 0.19806965771678278 0062_04 0.34178271687627493 0062_00 0.35060763229637537 0062_03 0.4269194352275009 00…

马氏距离和欧式距离详解

一般在机器学习模型中会涉及到衡量两个样本间的距离,如聚类、KNN,K-means等,使用的距离为欧式距离。其实,除了欧氏距离之外,还有很多的距离计算标准,本文主要介绍欧氏距离和马氏距离。 欧氏距离 最常见的两…

PCL 的欧式距离聚类

PCL 的欧式距离聚类 (感谢前辈) 转自:https://zhuanlan.zhihu.com/p/75117664 聚类代码如下: from paper_1_v0.my_ransac import my_ransac_v5 import numpy as npimg_id 1 # 这里读入你的kitti 雷达数据即可 path rD:\KITT…

相似度计算(3)——欧式距离和闵克夫斯基距离

欧式距离和闵克夫斯基距离 一、欧式距离 1、定义 欧式距离(欧几里得距离,欧几里得度量),是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离…