深度学习-LSTM网络-代码-示例

article/2025/9/22 11:14:53

一、 LSTM网络原理

  1. 要点介绍
    (1)LSTM网络用来处理带“序列”(sequence)性质的数据,比如时间序列的数据,像每天的股价走势情况,机械振动信号的时域波形,以及类似于自然语言这种本身带有顺序性质的由有序单词组合的数据。
    (2)LSTM本身不是一个独立存在的网络结构,只是整个神经网络的一部分,即由LSTM结构取代原始网络中的隐层单元部分。
    (3)LSTM网络具有“记忆性”。其原因在于不同“时间点”之间的网络存在连接,而不是单个时间点处的网络存在前馈或者反馈。如下图2中的LSTM单元(隐层单元)所示。图3是不同时刻情况下的网络展开图。图中虚线连接代表时刻,“本身的网络”结构连接用实线表示。
    这里写图片描述
    这里写图片描述
    这里写图片描述
    2.LSTM单元结构图
    图4,5是现在比较常用的LSTM单元结构示意图:
    这里写图片描述
    这里写图片描述
    其主要结构成分包含如下:
    (1)输入节点input node:接受上一时刻隐层单元的输出及当前时刻是样本输入;
    (2)输入门input gate:可以看到输入门会和输入节点的值相乘,组成LSTM中internal state单元值的一部分,当门的输出为1时,输入节点的激活值全部流向internal state,当门的输出为0时,输入节点的值对internal state没有影响。
    (3)内部状态internal state。
    (4)遗忘门forget gate:用于刷新internal state的状态,控制internal state的上一状态对当前状态的影响。
    各节点及门与隐藏单元输出的关系参见图4,图5所示。

二、代码示例

1.示例介绍
主要以今年参加的“2016年阿里流行音乐趋势预测”为例。
时间过得很快,今天已是第二赛季的最后一天了,我从5.18开始接触赛题,到6.14上午10点第一赛季截止,这一期间,由于是线下赛,可以用到各种模型,而自已又是做深度学习(deep learning)方向的研究,所以选择了基于LSTM的循环神经网络模型,结果也很幸运,进入到了第二赛季。开始接触深度学习也有大半年了,能够将自已所学用到这次真正的实际生活应用中,结果也还可以,自已感觉很欣慰。突然意识到,自已学习生涯这么多年,我想“学有所成,学有所用”该是我今后努力的方向和动力了吧。
下面我简单的介绍一下今年的赛题:
官方给的“输入”:2张表,一张是用户行为表(时间跨度20150301-20150830)mars_tianchi_user_actions,主要描述用户对歌曲的收藏,下载,播放等行为,一张是歌曲信息表mars_tianchi_songs,主要用来描述歌曲所属的艺人,及歌曲的相关信息,如发行时间,初始热度,语言等。
这里写图片描述
样例:
这里写图片描述
这里写图片描述
样例:
这里写图片描述
官方要求“输出”:预测随后2个月(20150901-20151030)每个歌手每天的播放量。输出格式:
这里写图片描述
2.初赛所用模型思路
由于是对歌手的播放量进行预测,所以直接对每个歌手的“播放量”这一对象进行统计,查看在20150301-20151030这8个月内歌手的播放量变化趋势,并以每天的播放量,连续3天的播放均值,连续3天的播放方差,作为一个时间点的样本,“滑动”构建神经网络的训练集。网络的构成如下:
(1)输入层:3个神经元,分别代表播放量,播放均值,播放方差;
(2)第一隐层:LSTM结构单元,带有35个LSTM单元;
(3)第二隐层:LSTM结构单元,带有10个LSTM单元;
(4)输出层:3个神经元,代表和输入层相同的含义。
目标函数:重构误差。
下图是某些歌手的播放统计曲线:
这里写图片描述
2.预测结果
蓝色代表歌手真实的播放曲线,绿色代表预测曲线:
这里写图片描述

三、代码

运行环境:windows下的spyder
语言:python 2.7,以及Keras深度学习库。

由于看这个赛题前,没有一点Python基础,所以也是边想思路边学Python,对Python中的数据结构不怎么了解,所以代码写得有点烂。但整个代码是可以运行无误的。这也是初赛时代码的最终版本。

# -*- coding: utf-8 -*-
"""
Created on Wed Jun 01 16:34:45 2016@author: Richer
"""
#%%修改记录
#1.将最后一层激活函数改为线性
#2.歌手播放曲线以歌曲量均值化(被第 4 点替换掉了)
#3.加入均值滤波 和 均值特征
#4.分别对每个歌手进行归一化处理(每个歌手之间相差太大了)
#5.对歌手进行聚类(效果不好)#%% 时间序列及字典
from __future__ import division
import pandas as pd
import pdb
#import time_DEBUG = False
_ISTEST = FalsetempList = pd.date_range(start = '20150301',end = '20150830')
i = 0
dateList = [] #给出的数据集所在的时间序列
while i < len(tempList):strTemp = str(tempList[i])[:10]strTemp = strTemp.replace('-','')dateList.append(strTemp)i = i + 1
recDict = {}.fromkeys(dateList,0)   # 给出的数据集所在的时间序列字典
del tempList,i,strTemp             tempList = pd.date_range(start = '20150831', end = '20151030')
i = 0
objDateL = []  #要预测的目标时间序列
while i < len(tempList):strTemp = str(tempList[i])[:10]strTemp = strTemp.replace('-','')objDateL.append(strTemp)i += 1
del strTemp, i## 异常数据信息
newSongExcep = 0                         # 用户表中出现的新歌曲
userDsExcep = 0                          # 用户表行为不在20150301-20150830#%% 表处理---歌曲艺人数据from copy import deepcopy
fileSong = open("p2_mars_tianchi_songs.csv")
songData = fileSong.readlines()bigSongDict = {}  # 以歌曲为中心的大表
for songInfo in songData:songInfo = songInfo.replace('\n','')arrayInfo = songInfo.split(',')bigSongDict[arrayInfo[0]] = {} # 注:此处需要初始化,否则会出错bigSongDict[arrayInfo[0]]['artist_id'] = arrayInfo[1]bigSongDict[arrayInfo[0]]['publish_time'] = arrayInfo[2]bigSongDict[arrayInfo[0]]['song_init_plays'] = arrayInfo[3]bigSongDict[arrayInfo[0]]['Language'] = arrayInfo[4]bigSongDict[arrayInfo[0]]['Gender'] = arrayInfo[5]bigSongDict[arrayInfo[0]]['nUser'] = 0                               #用户数目bigSongDict[arrayInfo[0]]['playRec'] = deepcopy(recDict)             #播放记录bigSongDict[arrayInfo[0]]['downloadRec'] = deepcopy(recDict)         #下载记录bigSongDict[arrayInfo[0]]['colloctRec'] = deepcopy(recDict)          #收藏记录fileSong.close()
del songData,arrayInfo,songInfo# 用户行为数据fileUser = open("p2_mars_tianchi_user_actions.csv")
userData = fileUser.readlines()for userInfo in userData:userInfo = userInfo.replace('\n','')arrUser = userInfo.split(',')if (arrUser[1] in bigSongDict):bigSongDict[arrUser[1]]['nUser'] += 1if arrUser[3] == '1':bigSongDict[arrUser[1]]['playRec'][arrUser[4]] += 1if arrUser[3] == '2':bigSongDict[arrUser[1]]['downloadRec'][arrUser[4]] += 1if arrUser[3] == '3':bigSongDict[arrUser[1]]['colloctRec'][arrUser[4]] += 1else:newSongExcep = newSongExcep + 1fileUser.close()
del userData,userInfo,arrUser#%%统计每个艺人的播放,下载,收藏的变化曲线(20150301-20150830)from collections import Counter
singerDict = {}   #歌手信息统计 
for songKey in bigSongDict.keys():theArtist = bigSongDict[songKey]['artist_id']if (theArtist in singerDict):
# dict(Counter())会把 0 值去掉        # 对应的 key 相加singerDict[theArtist]['playRec'] = dict(Counter(singerDict[theArtist]['playRec']) + Counter(bigSongDict[songKey]['playRec'])) singerDict[theArtist]['downloadRec'] = dict(Counter(singerDict[theArtist]['downloadRec']) + Counter(bigSongDict[songKey]['downloadRec']))singerDict[theArtist]['colloctRec'] = dict(Counter(singerDict[theArtist]['colloctRec']) + Counter(bigSongDict[songKey]['colloctRec']))singerDict[theArtist]['nSongs'] += 1else:singerDict[theArtist] = {}singerDict[theArtist]['playRec'] = deepcopy(bigSongDict[songKey]['playRec'])singerDict[theArtist]['downloadRec'] = deepcopy(bigSongDict[songKey]['downloadRec'])singerDict[theArtist]['colloctRec'] = deepcopy(bigSongDict[songKey]['colloctRec'])singerDict[theArtist]['nSongs'] = 1#%%将singerDict中字典转换为序列-按日期排序import numpy as np
singerInfoList = {}
tpPlayList = []     # 播放列表
tpDownList = []     # 下载列表
tpCollectList = []  # 收藏列表
artList = []        # 歌手列表i = 0for singer in singerDict.keys():artList.append(singer)singerInfoList[singer] = {}#numSongs = singerDict[singer]['nSongs']  #对应歌手的歌曲数量while i < len(dateList):if (dateList[i] in singerDict[singer]['playRec'].keys()):tpPlayList.append(singerDict[singer]['playRec'][dateList[i]])else:tpPlayList.append(0)if (dateList[i] in singerDict[singer]['downloadRec'].keys()):tpDownList.append(singerDict[singer]['downloadRec'][dateList[i]])else:tpDownList.append(0)if(dateList[i] in singerDict[singer]['colloctRec'].keys()):tpCollectList.append(singerDict[singer]['colloctRec'][dateList[i]])else:tpCollectList.append(0)i += 1i = 0meanPlays = np.mean(tpPlayList)stdPlays = np.std(tpPlayList)singerInfoList[singer]['meanPlay'] = meanPlayssingerInfoList[singer]['stdPlay'] = stdPlayssingerInfoList[singer]['maxPlay'] = (abs((np.array(tpPlayList) - meanPlays) / stdPlays)).max()singerInfoList[singer]['playRec'] = deepcopy(tpPlayList)singerInfoList[singer]['downloadRec'] = deepcopy(tpDownList)singerInfoList[singer]['colloctRec'] = deepcopy(tpCollectList)del tpPlayList, tpDownList, tpCollectListtpPlayList = []tpDownList = []tpCollectList = []del tpPlayList, tpDownList, tpCollectList, singer,meanPlays,stdPlays#%%对每个歌手的播放曲线进行FFT变换
import matplotlib.pyplot as plt
import math#i = 0
#if _ISTEST == True:
#    while i < len(singerInfoList):
#        flagY = i % 9
#        if flagY ==0:
#            plt.figure(figsize = (10,8), dpi = 150)
#            plt.suptitle('FFT process')
#        plt.subplot(3,3,flagY + 1)
#        fAmp = np.fft.fft(singerInfoList[artList[i]]['playRec']) / len(dateList)
#        plt.stem(abs(fAmp[1:(len(fAmp)/2)]))
#        i += 1
#        del fAmp
#
#pdb.set_trace()#predictTestFFT = {} #使用FFT回归预测结果
#playLth = 0 #选取播放序列的长度做FFT
#chsNum = np.ones(len(singerInfoList),dtype=np.int) * 1  #选择前10个峰值做趋势预测
##chsNum[0] = 10
##chsNum[5] = 10
##chsNum[7] = 10
##chsNum[8] = 10
##chsNum[10] = 10
##chsNum[17] = 10
##chsNum[21] = 10
##chsNum[22] = 10
#
#if _ISTEST == True:
#    playLth = len(dateList) - len(objDateL)
#else:
#    playLth = len(dateList)
#
#j = 0 #歌手索引
#i = 0 #FFT索引
#while j < len(singerInfoList):
#    i = 0
#    ampFFT = np.fft.fft(singerInfoList[artList[j]]['playRec'][:playLth]) / playLth
#    sortInd = sorted(xrange(len(ampFFT)),key = (abs(ampFFT)).__getitem__,reverse = True) #降序排列
#    chsAmp = np.zeros(chsNum[j])
#    while i < chsNum[j]:
#        chsAmp[i] = ampFFT[sortInd[i]]
#        i += 1
#    dateRcon = np.zeros((playLth + len(objDateL)))
#    ind = np.arange(0,len(dateRcon),1.0) / len(ampFFT) * (2 * np.pi)
#    for k, p in enumerate(chsAmp):
#        if k != 0:
#            p *= 2
#        dateRcon += np.real(p) * np.cos(k * ind)
#        dateRcon -= np.imag(p) * np.sin(k * ind)
#    predictTestFFT[artList[j]] = {}
#    predictTestFFT[artList[j]]['playRec'] = deepcopy((list(dateRcon))[playLth:(playLth + len(objDateL))])
#    
#    if _ISTEST == True:
#        flagY = j % 9
#        if flagY == 0:
#            plt.figure(figsize = (10,8),dpi = 150)
#            plt.suptitle('predict test play - use fft')
#        plt.subplot(3,3,flagY + 1)
#        plt.plot(singerInfoList[artList[j]]['playRec'][playLth:(playLth + len(objDateL))],'b')
#        plt.plot(predictTestFFT[artList[j]]['playRec'],'g')
#    j += 1
#    del ampFFT,sortInd,chsAmp,dateRcon,ind
#        
#        
#pdb.set_trace()#%% 绘制歌手播放,下载,收藏曲线xVal = range(len(dateList)) #x坐标值
i = 0while i < len(singerInfoList):  # 每个歌手播放曲线flagY = i % 9if flagY == 0:plt.figure(figsize = (10,8), dpi = 150)plt.suptitle('every singer average playK-downloadB-colloctR line')plt.subplot(3,3,flagY + 1)plt.plot(singerInfoList[artList[i]]['playRec'],'k')plt.plot(singerInfoList[artList[i]]['downloadRec'],'b')plt.plot(singerInfoList[artList[i]]['colloctRec'],'r')i += 1del flagY#%%提取歌手的标准差信息并进行排序#nCls = 1  #分类数
#clsTh = 0 #第几类
#
#nSgrToCls = [] #每类的歌手数量列表
#stdPlayList = [] #所有歌手标准差列表
#indStdList = []  #排序后的数据在原始序列中的索引
#
#i = 0
#while i < len(artList):
#    stdPlayList.append(singerInfoList[artList[i]]['stdPlay'])
#    i += 1
#
#indStdList = sorted(xrange(len(stdPlayList)),key = stdPlayList.__getitem__) #默认降序排列
#
#i = 0 
#while i < (nCls - 1):
#    nSgrToCls.append(int(len(singerInfoList) / nCls))
#    i += 1
#if nCls == 1:
#    nSgrToCls.append(int(len(singerInfoList)))
#else:
#    nSgrToCls.append(int(len(singerInfoList) - (nCls - 1) * nSgrToCls[0]))
#
#nObjSgr = nSgrToCls[clsTh]  #目标歌手数量
#objInd = []                 #初始化-对应的索引
#if clsTh == (nCls -1):
#    objInd = indStdList[( (nCls - 1) * nSgrToCls[0] ):]
#else:
#    objInd = indStdList[(clsTh * nSgrToCls[0]):((clsTh + 1) * nSgrToCls[0])]nObjSgr = len(singerInfoList)
objInd = range(nObjSgr)#%% 将singerDict 的 playRec downloadRec colloctRec按时间顺序转换为list
# 且分别对每个歌手数据进行归一化playList = []   #大播放列表
downList = []   # 大下载列表
collectList = [] #大收藏列表
avePlayList = [] # 播放曲线的均值滤波后曲线
varPlayList = [] #实际上是标准差曲线i = 0
while i < nObjSgr:artSg = artList[objInd[i]] meanPlays = singerInfoList[artSg]['meanPlay']stdPlays = singerInfoList[artSg]['stdPlay']maxPlays = singerInfoList[artSg]['maxPlay']playList = playList + list( (np.array(singerInfoList[artSg]['playRec']) - meanPlays) / (stdPlays * maxPlays) )downList = downList + singerInfoList[artSg]['downloadRec']collectList = collectList + singerInfoList[artSg]['colloctRec']i += 1
del meanPlays,stdPlays,maxPlays,artSg#所有歌手的播放下载收藏曲线放在一起
plt.figure(figsize = (10,8), dpi = 150)
plt.plot(playList,'k')
plt.plot(downList,'b')
plt.plot(collectList,'r')
plt.title('overall playK-downB-colloctR')#相关参数(影响结果的重要参数)
seqLength = 10                                  #序列长度
testSetRate = 0                                 #测试集比例
if _ISTEST == True:testSetRate = len(objDateL) / len(dateList)
else:testSetRate = 0
lenDate = len(dateList)                         #给定的数据集时间长度
nSinger = nObjSgr    #len(singerInfoList)                   #艺人数量
batchSize = 50                                   
validRate = 0.2
aveFilter = 4                                   # 均值滤波长度in_out_neurons = 3  #输入输出神经元个数
firLSTM = 35       #第一层神经元个数
secLSTM = 10       #第二层神经元个数 
epochD = 600        #迭代次数#%%对播放曲线列表 playList 进行均值滤波 及 求取标准差曲线i = 0
while i < nSinger:j = i * lenDatefj = i * lenDate          #起点ej = (i + 1) * lenDate   #终点while j < ej:if j < (i * lenDate + aveFilter -1):avePlayList.append(np.mean(playList[fj:(j+1)]))varPlayList.append(np.std(playList[fj:(j+1)]))else:avePlayList.append(np.mean(playList[(j-aveFilter+1):(j+1)]))varPlayList.append(np.std(playList[(j-aveFilter+1):(j+1)]))j +=1i +=1#均值滤波结果显示
i = 0
while i < nSinger:flagY = i % 9if flagY == 0:plt.figure(figsize = (10,8), dpi =150)plt.suptitle('average filter-play-originalK filterB')plt.subplot(3,3,flagY + 1)stPt = i * lenDateendPt = (i + 1) * lenDateplt.plot(playList[stPt:endPt],'k')plt.plot(avePlayList[stPt:endPt],'b')i += 1dateSet = pd.DataFrame({"avePlay":avePlayList,"play":playList,"varPlay":varPlayList}) #全体数据集
dateSet.to_csv("originalDataSet.csv")
dateSetOrigin = deepcopy(dateSet)    # 原始数据集保存一份# 数据预处理 去均值 方差归一 缩放到[-1 1]
#if _DEBUG == True:
#    pdb.set_trace()#avePlayMean = dateSet['avePlay'].mean()
##downMean = dateSet['down'].mean()
#playMean = dateSet['play'].mean()
#
#dateSet['avePlay'] = dateSet['avePlay'] - avePlayMean
##dateSet['down'] = dateSet['down'] - downMean
#dateSet['play'] = dateSet['play'] - playMean
#
#avePlayStd = dateSet['avePlay'].std()
##downStd = dateSet['down'].std()
#playStd = dateSet['play'].std()
#
#dateSet['avePlay'] = dateSet['avePlay'] / avePlayStd
##dateSet['down'] = dateSet['down'] / downStd
#dateSet['play'] = dateSet['play'] / playStd
#
#factorMax = abs(dateSet).max().max() + 0.05
#
#dateSet = dateSet / factorMax
#dateSet.to_csv("preproceeDataSet.csv")#所有歌手的播放曲线
plt.figure(figsize = (10,8), dpi = 150)
plt.plot(dateSet['play'],'k')
plt.plot(dateSet['avePlay'],'b')
plt.plot(dateSet['varPlay'],'g')
plt.xlabel('index')
plt.ylabel('playK-avePlayB')
plt.title('overall playK-avePlayB-varPlayG - preprocessed')#%%训练集测试集划分
def load_data(data, n_prev = 14):  docX, docY = [], []for i in range(len(data)-n_prev):
#        pdb.set_trace()docX.append(data.iloc[i:i+n_prev].as_matrix())docY.append(data.iloc[i+n_prev].as_matrix())
#    alsX = np.array(docX)
#    alsY = np.array(docY)return docX, docYdef train_test_split(df, test_size = 1 / 3, seqL = 14):  ntrn = int(round(len(df) * (1 - test_size)))X_train, y_train = load_data(df.iloc[0:ntrn],seqL)X_test, y_test = load_data(df.iloc[ntrn:],seqL)return (X_train, y_train), (X_test, y_test)# 训练集 测试集 划分
if _DEBUG == True:pdb.set_trace()
#初值
(xTrain,yTrain), (xTest,yTest) = train_test_split(dateSet[0:lenDate],testSetRate,seqLength)needPredict = [] # 需要被预测的后续序列的真实值
tempIndex = int(round(lenDate * (1 - testSetRate)))
if _ISTEST == True:needPredict.append(dateSet[0:lenDate].iloc[tempIndex:].as_matrix()) # 三维数组,每组是一个歌手需要预测的序列i = 1while i < nSinger:startPt = i * lenDateendPt = (i + 1) * lenDatetempData = dateSet[startPt:endPt](xTrainTp,yTrainTp), (xTestTp,yTestTp) = train_test_split(tempData,testSetRate,seqLength)xTrain = np.vstack((xTrain,xTrainTp))yTrain = np.vstack((yTrain,yTrainTp))xTest = np.vstack((xTest,xTestTp))yTest = np.vstack((yTest,yTestTp))tempIndex = int(round(len(tempData) * (1 - testSetRate)))if _ISTEST == True:needPredict.append(tempData.iloc[tempIndex:].as_matrix())i += 1X_Train = np.array(xTrain)
Y_Train = np.array(yTrain)
X_Test = np.array(xTest)
Y_Test = np.array(yTest)del xTrain, yTrain, xTest, yTest#%%绘制需要被预测的数据之间的差异
if _ISTEST == True:i = 0plt.figure(figsize = (10,8), dpi = 150)while i < nSinger:orgValue = pd.DataFrame(needPredict[i])plt.plot(orgValue[1])i += 1del orgValueplt.suptitle('need predict test data - preprocess data')#%% 训练算法模型
if _DEBUG == True:pdb.set_trace()from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.layers.recurrent import LSTM
from keras.callbacks import EarlyStoppingmodel = Sequential()
# LSTM作为第一层---输入层维度:input_dim,输出层维度:hidden_neurons
model.add(LSTM(firLSTM, input_dim=in_out_neurons, input_length=seqLength,return_sequences=True))
model.add(LSTM(secLSTM,return_sequences=False))
#model.add(LSTM(thiLSTM)) 
# 标准的一维全连接层---输出:in_out_neurons,输入:input_dim
model.add(Dense(in_out_neurons,activation='linear'))
model.compile(loss="mse", optimizer="rmsprop") # mse  mean_squared_error
#提前中断训练
earlyStopping = EarlyStopping(monitor = 'val_loss', patience = 10)
# X_Train三维数组,每组是一个序列
hist = model.fit(X_Train, Y_Train, batch_size=batchSize, nb_epoch=epochD, verbose=0, shuffle = False,validation_split=validRate,callbacks = [earlyStopping])
#print(hist.history)#对训练集进行预测-调试用
predictTrain = model.predict(X_Train)  # 二维数组,每一行是一组预测值
predictDF = pd.DataFrame(predictTrain)
Y_TrainDF = pd.DataFrame(Y_Train)plt.figure(figsize = (10,8), dpi = 150)
plt.plot(list(predictDF[1]),'g')
plt.plot(list(Y_TrainDF[1]),'b')
plt.title('train set predict check')if _DEBUG == True:pdb.set_trace()#%%预测
i = 0
j = 0
predictTest = {} # 所有歌手最终预测结果
while j < nSinger:artSg = artList[objInd[j]]predictTest[artSg] = {}predictTest[artSg]['playRec'] = []   predictTest[artSg]['avePlay'] = [] predictTest[artSg]['varPlay'] = []j += 1
del artSgif _DEBUG == True:pdb.set_trace()
i = 0
j = 0
lastIndex = len(X_Train) / nSinger
while j < nSinger:lastData = np.array([X_Train[int(lastIndex * (j+1) -1)]])while i < len(objDateL):                  #预测天数predictTp = model.predict(lastData)artSg = artList[objInd[j]]predictTest[artSg]['varPlay'].append(predictTp[0][2])predictTest[artSg]['playRec'].append(predictTp[0][1])predictTest[artSg]['avePlay'].append(predictTp[0][0])lastData = np.array([np.vstack((lastData[0][1:],predictTp))])i += 1j += 1i = 0del lastData, predictTp
del artSg# 预测结果分析---数据还原之前
i = 0
xIndex = range(len(objDateL))
if _ISTEST == True:while i < nSinger:                                 # 播放预测曲线flagY = i % 9if flagY == 0:plt.figure(figsize = (10,8), dpi = 150)plt.suptitle('test set: predict play')plt.subplot(3,3,flagY + 1)orgValue = pd.DataFrame(needPredict[i])  # needPredict三维数组,每组是一个歌手需要预测的序列值artSg = artList[objInd[i]]plt.plot(xIndex,predictTest[artSg]['playRec'],'g')plt.plot(xIndex,orgValue[1],'b')i += 1del orgValuedel artSgi = 0
if _ISTEST == True:while i < nSinger:                                 # 平均值预测曲线flagY = i % 9if flagY == 0:plt.figure(figsize = (10,8), dpi = 150)plt.suptitle('test-predict avePlay')plt.subplot(3,3,flagY + 1)orgValue = pd.DataFrame(needPredict[i])artSg = artList[objInd[i]]plt.plot(xIndex,predictTest[artSg]['avePlay'],'g')plt.plot(xIndex,orgValue[0],'b')i += 1del orgValuedel artSg#i = 0
#while i <nSinger:                                 # 收藏预测曲线
#    flagY = i % 9
#    if flagY == 0:
#        plt.figure(figsize = (10,8), dpi = 150)
#
#    plt.subplot(3,3,flagY +1)
#    orgValue = pd.DataFrame(needPredict[i])
#    plt.plot(xIndex,predictTest[artList[i]]['colloctRec'],'g')
#    plt.plot(xIndex,orgValue[0],'b')
#    
#    i += 1
#    del orgValue
#plt.suptitle('test-predict colloct')#%%预测---还原到原始数据集
if _ISTEST == True:i = 0while i < nSinger:flagY = i % 9if flagY == 0:plt.figure(figsize = (10,8), dpi =150)plt.suptitle('test-predict play- back to original')plt.subplot(3,3,flagY + 1)artSg = artList[objInd[i]]meanPlays = singerInfoList[artSg]['meanPlay']stdPlays = singerInfoList[artSg]['stdPlay']maxPlays = singerInfoList[artSg]['maxPlay']orgValue = ((pd.DataFrame(needPredict[i]))[1]) * maxPlays * stdPlays + meanPlaysaftValue = ((pd.DataFrame(predictTest[artSg]['playRec']))[0]) * maxPlays * stdPlays + meanPlaysplt.plot(xIndex,orgValue,'b')plt.plot(xIndex,aftValue,'g')i +=1del orgValue, aftValuedel artSg#使用 aveplay 预测真实 play
if _ISTEST == True:i = 0while i < nSinger:flagY = i % 9if flagY == 0:plt.figure(figsize = (10,8), dpi =150)plt.suptitle('use avePlay to predict real play line')plt.subplot(3,3,flagY + 1)artSg = artList[objInd[i]]meanPlays = singerInfoList[artSg]['meanPlay']stdPlays = singerInfoList[artSg]['stdPlay']maxPlays = singerInfoList[artSg]['maxPlay']orgValue = ((pd.DataFrame(needPredict[i]))[1]) * maxPlays * stdPlays + meanPlaysaftValue = ((pd.DataFrame(predictTest[artSg]['avePlay']))[0]) * maxPlays * stdPlays + meanPlaysplt.plot(xIndex,orgValue,'b')plt.plot(xIndex,aftValue,'g')i +=1del orgValue, aftValuedel artSg#%%融合svr
svrResult = {}
fileSVR = open("svr.csv")
svrData = fileSVR.readlines()for svrInfo in svrData:svrInfo = svrInfo.replace('\n','')arrInfo = svrInfo.split(',')svrResult[arrInfo[0]] = int(arrInfo[1])fileSVR.close()
del svrData,svrInfo,arrInfo#%% 评价指标if _ISTEST == True:singerF = [] # 每个歌手的评价指标值 FsumF = 0i = 0while i < nSinger:artSg = artList[objInd[i]]meanPlays = singerInfoList[artSg]['meanPlay']stdPlays = singerInfoList[artSg]['stdPlay']maxPlays = singerInfoList[artSg]['maxPlay']orgValue = ((pd.DataFrame(needPredict[i]))[1]) * maxPlays * stdPlays + meanPlaysaftValue = ((pd.DataFrame(predictTest[artSg]['playRec']))[0]) * maxPlays * stdPlays + meanPlaystempArr = (np.array(aftValue) - np.array(orgValue)) / (np.array(orgValue))tempS = ((tempArr * tempArr).sum()) / len(objDateL)theta = math.sqrt(tempS)tempFi = math.sqrt((np.array(orgValue)).sum())sumF = sumF + (1-theta) * tempFisingerF.append((1-theta) * tempFi)i += 1del orgValue,aftValue,tempArrdel artSgif _ISTEST == True:singerFA = [] # 每个歌手的评价指标值 FsumF = 0i = 0while i < nSinger:artSg = artList[objInd[i]]meanPlays = singerInfoList[artSg]['meanPlay']stdPlays = singerInfoList[artSg]['stdPlay']maxPlays = singerInfoList[artSg]['maxPlay']orgValue = ((pd.DataFrame(needPredict[i]))[1]) * maxPlays * stdPlays + meanPlaysaftValue = (((pd.DataFrame(predictTest[artSg]['playRec']))[0]) * maxPlays * stdPlays + meanPlays) * 0.5 + svrResult[artSg] * 0.5tempArr = (np.array(aftValue) - np.array(orgValue)) / (np.array(orgValue))tempS = ((tempArr * tempArr).sum()) / len(objDateL)theta = math.sqrt(tempS)tempFi = math.sqrt((np.array(orgValue)).sum())sumF = sumF + (1-theta) * tempFisingerFA.append((1-theta) * tempFi)i += 1del orgValue,aftValue,tempArrdel artSg
#    resF = pd.DataFrame({"singerf":singerF})
#    resF.to_csv("singerF.csv")#%%使用均值预测后的评价指标值
#singerF_AVG = [] # 每个歌手的评价指标值 F
#sumF = 0
#i = 0
#while i < nSinger:
#    meanPlays = singerInfoList[artList[i]]['meanPlay']
#    stdPlays = singerInfoList[artList[i]]['stdPlay']
#    maxPlays = singerInfoList[artList[i]]['maxPlay']
#    
#    orgValue = ((pd.DataFrame(needPredict[i]))[1]) * maxPlays * stdPlays + meanPlays
#    aftValue = ((pd.DataFrame(predictTest[artList[i]]['avePlay']))[0]) * maxPlays * stdPlays + meanPlays
#    
#    tempArr = (np.array(aftValue) - np.array(orgValue)) / (np.array(orgValue))
#    tempS = ((tempArr * tempArr).sum()) / len(objDateL)
#    theta = math.sqrt(tempS)
#    
#    tempFi = math.sqrt((np.array(orgValue)).sum())
#    sumF = sumF + (1-theta) * tempFi
#    
#    singerF_AVG.append((1-theta) * tempFi)
#    
#    i += 1
#    del orgValue,aftValue,tempArr
#sum(singerF_AVG[:36]) + sum(singerF_AVG[37:56]) + sum(singerF_AVG[57:])#%%写入到预测文件
if _ISTEST == False:import csvresFile = open("mars_tianchi_artist_plays_predict.csv","wb")writerRes = csv.writer(resFile)i = 0j = 1while i < nSinger:artSg = artList[objInd[i]]meanPlays = singerInfoList[artSg]['meanPlay']stdPlays = singerInfoList[artSg]['stdPlay']maxPlays = singerInfoList[artSg]['maxPlay']aftValue = (((pd.DataFrame(predictTest[artSg]['playRec']))[0]) * maxPlays * stdPlays + meanPlays) * 0.5 + svrResult[artSg] * 0.5while j < len(objDateL):oneLineData = [artSg,str(int(aftValue[j])),objDateL[j]]writerRes.writerow(oneLineData)del oneLineDataj += 1del aftValuej = 1i += 1resFile.close()del artSg

四、参考文献

1.LSTM入门介绍比较好的文章:A Critical review of rnn for sequence learning
2.LSTM学习思路,参见知乎的一个介绍,很详细:https://www.zhihu.com/question/29411132 。
3.Python入门视频教程—可看南京大学张莉老师在coursera上的公开课《用Python玩转数据》,有例子介绍,很实用。https://www.coursera.org/learn/hipython/home/welcome。
4.Keras介绍—参看官方文档http://keras.io/


http://chatgpt.dhexx.cn/article/pScawvf3.shtml

相关文章

LSTM模型介绍

递归神经网络&#xff08;RNN&#xff09; 人类不会每时每刻都开始思考。 当你阅读这篇文章时&#xff0c;你会根据你对之前单词的理解来理解每个单词。 你不会忘掉掉所有东西&#xff0c;然后再从头开始思考。 你的想法有持久性。 传统的神经网络不能做到这一点&#xff0c;…

人人都能用Python写出LSTM-RNN的代码![你的神经网络学习最佳起步]

0. 前言 本文翻译自博客&#xff1a; iamtrask.github.io &#xff0c;这次翻译已经获得trask本人的同意与支持&#xff0c;在此特别感谢trask。本文属于作者一边学习一边翻译的作品&#xff0c;所以在用词、理论方面难免会出现很多错误&#xff0c;假如您发现错误或者不合适…

LSTM神经网络算法

RNN RNN 是包含循环的网络&#xff0c;允许信息的持久化。 在下面的示例图中&#xff0c;神经网络的模块&#xff0c;A&#xff0c;正在读取某个输入 x_i&#xff0c;并输出一个值 h_i。循环可以使得信息可以从当前步传递到下一步。 RNN 可以被看做是同一神经网络的多次复制&…

Understanding LSTM Networks(LSTM的网络结构)

Recurrent Neural Networks 人类不是每时每刻都从头开始思考的。当你读这篇文章的时候&#xff0c;你理解每个单词是基于你对以前单词的理解。你不会把所有的东西都扔掉&#xff0c;然后从头开始思考。你的思想有毅力。传统的神经网络无法做到这一点&#xff0c;这似乎是一个主…

理解 LSTM 网络

递归神经网络人类并不是每时每刻都从头开始思考。正如你阅读这篇文章的时候&#xff0c;你是在理解前面词语的基础上来理解每个词。你不会丢弃所有已知的信息而从头开始思考。你的思想具有持续性。传统的神经网络不能做到这点&#xff0c;而且这似乎也是它的主要缺陷。比如&…

LSTM网络的简单理解

目录 RNN递归神经网络LSTM神经网络结构变形1.peephole connections结构2.在忘记门与输入门之间引入一个耦合3.门循环单元&#xff08;GRU&#xff09; 今天对LSTM网络进行学习。 在理解LSTM网络之前&#xff0c;我们首先要对Recurrent Neural Networks&#xff08;RNNs&#xf…

循环神经网络与LSTM

1. 循环神经网络 ①基本结构 在传统的神经网络模型中&#xff0c;是从输入层到隐含层再到输出层&#xff0c;层与层之间是全连接的&#xff0c;每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如&#xff0c;你要预测句子的下一个单词是什么&am…

实例 :教你使用简单神经网络和LSTM进行时间序列预测(附代码)

翻译&#xff1a;张玲 校对&#xff1a;丁楠雅 本文约1500字&#xff0c;建议阅读5分钟。 作者基于波动性标准普尔500数据集和Keras深度学习网络框架&#xff0c;利用python代码演示RNN和LSTM RNN的构建过程&#xff0c;便于你快速搭建时间序列的预测模型。 图片来源&#xff…

【LSTM】深入浅出讲解长短时记忆神经网络(结构、原理)

本文收录于《深入浅出讲解自然语言处理》专栏&#xff0c;此专栏聚焦于自然语言处理领域的各大经典算法&#xff0c;将持续更新&#xff0c;欢迎大家订阅&#xff01;​​个人主页&#xff1a;有梦想的程序星空​​个人介绍&#xff1a;小编是人工智能领域硕士&#xff0c;全栈…

深入理解LSTM神经网络

本文内容及图片主要参考&#xff1a;Understanding LSTM Networks LSTM核心思想 LSTM最早由 Hochreiter & Schmidhuber 在1997年提出&#xff0c;设计初衷是希望能够解决神经网络中的长期依赖问题&#xff0c;让记住长期信息成为神经网络的默认行为&#xff0c;而不是需要…

LSTM神经网络实战

上一遍博客简单的介绍了LSTM神经网络的工作原理&#xff0c; 有兴趣的打开了解一下&#xff1a; https://blog.csdn.net/weixin_52486467/article/details/126301845 显目介绍&#xff1a; 一、问题背景 电力系统负荷&#xff08;电力需求量&#xff0c;即有功功率&#xf…

LSTM -长短期记忆网络(RNN循环神经网络)

文章目录 基本概念及其公式输入门、输出门、遗忘门候选记忆元记忆元隐状态 从零开始实现 LSTM初始化模型参数定义模型训练和预测 简洁实现小结 基本概念及其公式 LSTM&#xff0c;即(long short-term Memory)长短期记忆网络&#xff0c;也是RNN循环神经网络的一种改进方法&…

机器学习之LSTM的Python实现

什么是LSTM&#xff1f; LSTM&#xff08;长短期记忆人工神经网络&#xff09;&#xff0c;是一种可以学习长期依赖特殊的RNN&#xff08;循环神经网络&#xff09;。 传统循环网络RNN虽然可以通过记忆体&#xff0c;实现短期记忆&#xff0c;进行连续数据的预测。但是当连续…

神经网络:LSTM基础学习

1、LSTM简介 在时间序列数据学习中&#xff0c;传统的循环神经网络&#xff08;RNN&#xff09;存在较多的学习瓶颈和技术缺陷&#xff0c;而长短时记忆&#xff08;LSTM&#xff09;神经网络克服了循环神经网络的缺陷&#xff0c;使其在长时间序列数据学习训练中能克服梯度爆炸…

Lstm(循环神经网络)

算法模型Lstm(循环神经网络)&#xff1a; 简介 LSTM和RNN相似&#xff0c;它们都是在前向传播的过程中处理流经细胞的数据&#xff0c;不同之处在于 LSTM 中细胞的结构和运算有所变化。 LSTM结构&#xff1a; 遗忘门&#xff1a; 遗忘门的功能是决定应丢弃或保留哪些信息。…

基于MATLAB的LSTM神经网络时序预测

参考博客及文献&#xff1a;4 Strategies for Multi-Step Time Series Forecasting Multivariate Time Series Forecasting with LSTMs in Keras (machinelearningmastery.com) LSTM进阶&#xff1a;使用LSTM进行多维多步的时间序列预测_lstm多维多部预测_一只小EZ的博客-CSD…

LSTM神经网络图解

LSTM神经网络图详解 &#xff08;1&#xff09;遗忘门&#xff0c;用于计算信息的遗忘&#xff08;保留&#xff09;程度&#xff0c;通过sigmoid处理后为0到1的值&#xff0c;1表示全部保留&#xff0c;0表示全部忘记。 f t σ ( W f ⋅ [ h t − 1 , x t ] b f ) f_{t}\si…

【神经网络】LSTM

1.什么是LSTM 长短期记忆&#xff08;Long short-term memory, LSTM&#xff09;是一种特殊的RNN&#xff0c;主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说&#xff0c;相比普通的RNN&#xff0c;LSTM能够在更长的序列中有更好的表现。 LSTM区别于RNN地方…

[深入浅出] LSTM神经网络

由来 人类并不是每时每刻都从一片空白的大脑开始他们的思考。在你阅读这篇文章时候&#xff0c;你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义。我们不会将所有的东西都全部丢弃&#xff0c;然后用空白的大脑进行思考。我们的思想拥有持久性。 传统的神经…

简单理解LSTM神经网络

递归神经网络 在传统神经网络中&#xff0c;模型不会关注上一时刻的处理会有什么信息可以用于下一时刻&#xff0c;每一次都只会关注当前时刻的处理。举个例子来说&#xff0c;我们想对一部影片中每一刻出现的事件进行分类&#xff0c;如果我们知道电影前面的事件信息&#xf…