Gabor

article/2025/9/15 16:19:17

出处:http://zhenyulu.cnblogs.com/articles/325968.html

二、Gabor函数

Gabor变换属于加窗傅立叶变换,Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。另外Gabor函数与人眼的生物作用相仿,所以经常用作纹理识别上,并取得了较好的效果。二维Gabor函数可以表示为:

其中:

v的取值决定了Gabor滤波的波长,u的取值表示Gabor核函数的方向,K表示总的方向数。参数决定了高斯窗口的大小,这里取。程序中取4个频率(v=0, 1, ..., 3),8个方向(即K=8,u=0, 1, ... ,7),共32个Gabor核函数。不同频率不同方向的Gabor函数可通过下图表示:

图片来源:GaborFilter.html

图片来源:http://www.bmva.ac.uk/bmvc/1997/papers/033/node2.html

三、代码实现

Gabor函数是复值函数,因此在运算过程中要分别计算其实部和虚部。代码如下:

private void CalculateKernel(int Orientation, int Frequency)
{double real, img;for(int x = -(GaborWidth-1)/2; x<(GaborWidth-1)/2+1; x++)for(int y = -(GaborHeight-1)/2; y<(GaborHeight-1)/2+1; y++){real = KernelRealPart(x, y, Orientation, Frequency);img = KernelImgPart(x, y, Orientation, Frequency);KernelFFT2[(x+(GaborWidth-1)/2) + 256 * (y+(GaborHeight-1)/2)].Re = real;KernelFFT2[(x+(GaborWidth-1)/2) + 256 * (y+(GaborHeight-1)/2)].Im = img;}
}
private double KernelRealPart(int x, int y, int Orientation, int Frequency)
{double U, V;double Sigma, Kv, Qu;double tmp1, tmp2;U = Orientation;V = Frequency;Sigma = 2 * Math.PI * Math.PI;Kv = Math.PI * Math.Exp((-(V+2)/2)*Math.Log(2, Math.E));Qu = U * Math.PI  / 8;tmp1 = Math.Exp(-(Kv * Kv * ( x*x + y*y)/(2 * Sigma)));tmp2 = Math.Cos(Kv * Math.Cos(Qu) * x + Kv * Math.Sin(Qu) * y) - Math.Exp(-(Sigma/2));return tmp1 * tmp2 * Kv * Kv / Sigma;   
}
private double KernelImgPart(int x, int y, int Orientation, int Frequency)
{double U, V;double Sigma, Kv, Qu;double tmp1, tmp2;U = Orientation;V = Frequency;Sigma = 2 * Math.PI * Math.PI;Kv = Math.PI * Math.Exp((-(V+2)/2)*Math.Log(2, Math.E));Qu = U * Math.PI  / 8;tmp1 = Math.Exp(-(Kv * Kv * ( x*x + y*y)/(2 * Sigma)));tmp2 = Math.Sin(Kv * Math.Cos(Qu) * x + Kv * Math.Sin(Qu) * y) - Math.Exp(-(Sigma/2));return tmp1 * tmp2 * Kv * Kv / Sigma;   
}

有了Gabor核函数后就可以采用前文中提到的“离散二维叠加和卷积”或“快速傅立叶变换卷积”的方法求解Gabor变换,并对变换结果求均值和方差作为提取的特征。32个Gabor核函数对应32次变换可以提取64个特征(包括均值和方差)。由于整个变换过程代码比较复杂,这里仅提供测试代码供下载。该代码仅计算了一个101×101尺寸的Gabor函数变换,得到均值和方差。代码采用两种卷积计算方式,从结果中可以看出,快速傅立叶变换卷积的效率是离散二维叠加和卷积的近50倍。

代码下载请点 >>>>  这里 。注意,代码中没有包含Exocortex.DSP,请测试者到相应网站上下载并包含在自己的项目中。

解压缩后,里面有一"GaborTest.png"文件,程序中默认路径是“D:\”,请将此图片放置到此路径下。(程序代码在Visual Studio .net 2003下调试通过)。

 


http://chatgpt.dhexx.cn/article/oY47JY57.shtml

相关文章

Gabor滤波器与特征提取

一、Gabor滤波器 Gabor滤波器&#xff0c;最主要使用优势体现在对物体纹理特征的提取上。 二维Gabor基函数能够很好地描述哺乳动物初级视觉系统中一对简单视觉神经元的感受野特性。随着小波变换和神经生理学的发展&#xff0c;Gabor变换逐渐演变成二维Gabor小波的形式。Gabor…

【图像处理】Gabor滤波器

Gabor的核函数参考的wiki 使用实数Real的公式计算核函数代码&#xff1a; Mat getGaborFilter(float lambda, float theta, float sigma2,float gamma, float psi 0.0f){if(abs(lambda-0.0f)<1e-6){lambda 1.0f;} float sigma_x sigma2;float sigma_y sigma2/(gamma*gam…

生物特征识别中的Gabor滤波器

Daugman&#xff08;1980&#xff09;提出的2D Gabor滤波器&#xff08;以下简称Gabor滤波器&#xff09;&#xff0c;在纹理分类、纹理分割、生物特征识别中取得了广泛的应用。本文首先简要介绍Gabor滤波器&#xff0c;然后列举它在生物特征识别方面的代表性应用。 2D Gabor滤…

matlab的gabor类解读

为什么要进行解析&#xff0c;因为自带的gabor函数有个小坑&#xff0c; 转opencv的时候&#xff0c;因为没有完全理解自带的gabor源码被小小的坑了一下&#xff0c; 所以做一下记录&#xff0c; 以方便后人。‘ 版本是2016B 文章目录 Matlab gabor函数解析1 gabor基本公式2 m…

Gabor滤波 + 多尺度问题

Gabor函数 Gabor变换属于加窗傅立叶变换&#xff0c;Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。另外Gabor函数与人眼的生物作用相仿&#xff0c;所以经常用作纹理识别上&#xff0c;并取得了较好的效果。二维Gabor函数可以表示为&#xff1a; 其中&#xff1a;…

Gabor算法

在数字图像处理领域&#xff0c;Gabor滤波器是以Dennis Gabor命名的&#xff0c;Gabor滤波器是用作边缘检测的线性滤波器。Gabor滤波器的频率和方向的表达与人类的视觉系统很相似。研究发现&#xff0c;Gabor滤波器非常适合纹理表达和分离。在空间域中&#xff0c;一个二维Gabo…

Log-Gabor滤波器

Log-Gabor滤波器 G ( f ) e l n 2 ( ω / ω 0 ) 2 l n 2 ( k / ω 0 ) G(f)e^{\frac {ln^2({\omega /\omega_0})}{2{ln}^2(k/\omega_0)}} G(f)e2ln2(k/ω0​)ln2(ω/ω0​)​ 式中&#xff1a; ω 0 \omega_0 ω0​为滤波器中心频率&#xff0c;通常将 k / ω 0 k/\omega_0 k…

Gabor滤波器原理

一、什么是Gabor函数&#xff08;以下内容含部分翻译自维基百科&#xff09; 在图像处理中&#xff0c;Gabor函数是一个用于边缘提取的线性滤波器。Gabor滤波器的频率和方向表达同人类视觉系统类似。研究发现&#xff0c;Gabor滤波器十分适合纹理表达和分离。在空间域中&#x…

Gabor的OpenCV代码

唯一持续维护地址&#xff1a;http://52coding.com/opencv-gabor 最近弄人脸识别&#xff0c;用到Gabor卷积核&#xff0c;但网上的代码似乎没有和我心意的&#xff0c;于是参考了自己写了下&#xff01;参考了Zhou Mian以及matlab的Gabor实现代码的代码。虽然OpenCV的imporc下…

2021-08-07 Gabor滤波器简介以及简单应用

Gabor滤波器&#xff08;Gabor Filter&#xff09; 文章目录 Gabor滤波器&#xff08;Gabor Filter&#xff09;简介Gabor滤波器的不同参数Gabor滤波器的简单应用&#xff08;python&#xff09; 简介 Gabor滤波器是一种线性滤波器&#xff0c;用于边缘检测、纹理分析、特征提…

Gabor Filters

Gabor Filters: Manjunath, B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 837-842. Gabor滤波器是一种基于Gabor函数的特定频率和方向选择性滤波器。…

基于Gabor滤波器的人脸特征提取

Gabor小波变换的核函数&#xff0c;其最大的特点是其与人脑的皮层神经细胞的二维反射区具有相似的特征。基于Gabor小波变换的特征信息能够有效提取各种细节结构信息&#xff0c;因此Gabor小波变换在图像识别领域有着较为广泛的应用。根据Gabor小波变换的特点&#xff0c;基于Ga…

Gabor特征提取

Gabor小波与人类视觉系统中简单细胞的视觉刺激响应非常相似。它在提取目标的局部空间和频率域信息方面具有良好的特性。虽然Gabor小波本身并不能构成正交基&#xff0c;但在特定参数下可构成紧框架。Gabor小波对于图像的边缘敏感&#xff0c;能够提供良好的方向选择和尺度选择特…

Gabor 卷积神经网络

与不涉及学习过程的 hand-crafted 滤波器不同&#xff0c;DCNNs-based feature extraction 是一种 data-driven 技术&#xff0c;可以直接从数据中学习具有鲁棒性的特征表示。然而&#xff0c;它有非常大的训练成本和复杂的模型参数。 DCNNs 有限的几何变换建模能力主要来自于…

如何理解Gabor滤波器

转载自如何理解Gabor滤波器 介绍 我们已经知道&#xff0c;傅里叶变换是一种信号处理中的有力工具&#xff0c;可以帮助我们将图像从空域转换到频域&#xff0c;并提取到空域上不易提取的特征。但是经过傅里叶变换后&#xff0c;图像在不同位置的频度特征往往混合在一起&…

基于python的图像Gabor变换及特征提取

基于python的图像Gabor变换及特征提取 1.前言2. “Gabor帮主”简介3.“Gabor帮主”大招之图像变换3.“Gabor帮主”大招之图像特征提取 深圳中兴网信科技有限公司&#xff1a;廖海斌 1.前言 在深度学习出来之前&#xff0c;图像识别领域北有“Gabor帮主”&#xff0c;南有“SIF…

Gabor滤波器详解

转载自如何理解Gabor滤波器 介绍 我们已经知道&#xff0c;傅里叶变换是一种信号处理中的有力工具&#xff0c;可以帮助我们将图像从空域转换到频域&#xff0c;并提取到空域上不易提取的特征。但是经过傅里叶变换后&#xff0c;图像在不同位置的频度特征往往混合在一起&…

Gabor 变换

http://blog.sina.com.cn/s/blog_48a242d601000a3j.html Gabor变换属于加窗傅立叶变换&#xff0c;Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。另外Gabor函数与人眼的生物作用相仿&#xff0c;所以经常用作纹理识别上&#xff0c;并取得了较好的效果。 Gabor变换…

图像处理:Gabor滤波器简介以及python实现

在图像处理中&#xff0c;以Dennis Gabor命名的Gabor滤波器是一种用于纹理分析的线性滤波器&#xff0c;本质上是指在分析点或分析区域周围的局部区域内&#xff0c;分析图像中是否存在特定方向的特定频率内容。Gabor滤波器的频率和方向表示被许多当代视觉科学家认为与人类视觉…

Gabor滤波器学习

本文的目的是用C实现生成Gabor模版&#xff0c;并对图像卷积。并简单提一下&#xff0c;Gabor滤波器在纹理特征提取上的应用。 一、什么是Gabor函数&#xff08;以下内容含部分翻译自维基百科&#xff09; 在图像处理中&#xff0c;Gabor函数是一个用于边缘提取的线性滤波器。…