图像识别最好的算法,图片相似度识别算法

article/2025/10/18 11:09:35

现在人脸识别最有效的算法是什么?

最好的人脸识别系统在理想情况下比人类识别的表现要好的多。但是一旦环境情况变糟,系统的表现就差强人意了。而计算机科学家们当然是非常想要开发出一种算法,在各种情况下都能够表现优异。

现在,中国香港大学的汤晓鸥教授和他的学生路超超(音译)宣布他们攻克了这个难题。他们开发了一种叫“高斯”的人脸识别算法首次超过了人类自身。

新的识别系统对于各种平台都能够提供人类级别的识别能力,从手机到电脑游戏中的人脸识别,从安全系统到密码控制等等。任何一个人脸自动识别程序,首先要考虑的就是去构建一个合适的数据集来测试算法。

那需要一个非常大范围的,各种各样的,带着各种复杂动作、光线和表情的,不同脸的图像,各种人种、年龄和性别都要考虑在内。然后还要考察服装、发型以及化妆等其他因素的影响。

比较幸运的是,已经有这么一个拥有各种不同人脸的标准数据库——Labelled Faces。它拥有超过13,000张不同人脸的图片,它们是从网络上收集的6000个不同的公众人物。

更重要的是,每个人都拥有不止一张人脸图片。当然也存在其他的人脸数据库,但是Labelled faces目前是计算机科学家们所公认的最具参考价值的测试数据集。

面部识别的任务是去比较两张不同的图片,然后判断他们是否是同一个人。(你可以试试看,能否看出这里展示的每对图片是否是同一个人。)人类在这个数据库上的表现可以达到97.53%的准确度。

但是没有任何一个计算机算法能够达到这个成绩。直到这个新算法的出现。新的算法依照5点图片特征,把每张脸图规格化成一个150*120的像素图,这些特征分别是:两只眼睛、鼻子和嘴角的位置。

然后,算法把每张图片划分成重叠的25*25像素的区域,并用一个数学向量来描述每一个区域的基本特征。做完了这些,就可以比较两张图片的相似度了。但是首先需要知道的是到底要比较什么。

这个时候就需要用到训练数据集了。一般的方法是使用一个独立的数据集来训练算法,然后用同一个数据集中的图片来测试算法。但是当算法面对训练集中完全不同的两张图片的时候,经常都会识别失败。

“当图片的分布发生改变的时候,这种训练方法就一点都不好了。”超超和晓鸥说到。相反,他们用四个拥有不同图片的,完全不同的数据集来测试“高斯”算法。

举个例子,其中一个数据集是著名的Multi-PIE数据库,它包含了 337个不同的物体,从15种不同的角度,在19种不同的光照情况下,分别拍摄4组图片。

另一个数据库叫做Life Photes包含400个不同的人物,每个人物拥有10张图片。用这些数据库训练了算法后,他们最终让新算法在Labelled Faces数据库上进行测试。

目标是去识别出所有匹配和不匹配的图片对。请记住人类在这个数据库上的表现是97.53%的精确度。“我们的“高斯”算法能够达到98.52%的精确度,这也是识别算法第一次击败人类。”超超和晓鸥说到。

这是一个令人印象深刻的结果,因为数据中的照片包含各种各样不同的情况。超超和晓鸥指出,仍然有很多挑战在等着他们。现实情况中,人们可以利用各种附加的线索来识别,比如脖子和肩膀的位置。

“超过人类的表现也许只是一个象征性的成就罢了”他们说。另一个问题是花费在训练新算法上的时间,还有算法需要的内存大小以及识别两幅图所需要的时间。这可以用并行计算和特制处理器等技术来加快算法的运行时间。

总之,精确的人脸自动识别算法已经到来了,而且鉴于现在的事实,这只会更快。

谷歌人工智能写作项目:神经网络伪原创

yolo算法是什么?

YOLO 是一种使用神经网络提供实时对象检测的算法写作猫。该算法因其速度和准确性而广受欢迎。它已在各种应用中用于检测交通信号、人员、停车计时器和动物。

YOLO 是“You Only Look Once”一词的缩写。这是一种算法,可以(实时)检测和识别图片中的各种对象。YOLO 中的对象检测是作为回归问题完成的,并提供检测到的图像的类别概率。

YOLO 算法采用卷积神经网络 (CNN) 实时检测物体。顾名思义,该算法只需要通过神经网络进行一次前向传播来检测物体。这意味着整个图像中的预测是在单个算法运行中完成的。

CNN 用于同时预测各种类别概率和边界框。YOLO 算法由各种变体组成。优点1、速度:该算法提高了检测速度,因为它可以实时预测物体。

2、高精度: YOLO 是一种预测技术,可提供准确的结果且背景误差最小。3、学习能力:该算法具有出色的学习能力,使其能够学习对象的表示并将其应用于对象检测。

图像识别算法

图像虽好,盘子太大啊。以前一直对用的算法不太满意,前天晚上居然发现以前算法里面的一个错误。可惜这是我最得意自认为最完美的算法,结果盯着看了十来个小时也没有发现算法的漏 洞,但结果就是不对。

最终还是没有找出自己算法的bug,无奈之下换了一个很简单的算法,虽然速度慢不那么精确但基本够用-_-show一下我的处理结果,嘿嘿。基本驱除所有的其他区域,真是干净啊。识别率也有快100%了。

并且不需要用户调整任何参数。我就非常暴力地隐藏了所有参数,鲁棒性似乎还很高。不管了,用户说要傻瓜化的,这下够傻瓜了。

目的就是识别我贴在电梯限速器试验台上的四个标志,求四个标志之间连线的锐角(夹角随着速度而变化),目的就是求出张角随速度的变化规律。

限速器在以一定的加速度旋转,图像是通过旋转编码器的脉冲控制外触发来进行图像采集的。最快大约200fps。限速器节圆速度大约最快2m/s。

在图像处理中有哪些算法?

1、图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。

采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,可减少计算量,获得更有效的处理。它在图像处理中也有着广泛而有效的应用。

2、图像编码压缩:图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。

编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。3、图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。

图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。4、图像分割:图像分割是数字图像处理中的关键技术之一。

图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。5、图像描述:图像描述是图像识别和理解的必要前提。

一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。

6、图像分类:图像分类属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。

图像分类常采用经典的模式识别方法,有统计模式分类和句法模式分类。扩展资料:图像处理主要应用在摄影及印刷、卫星图像处理、医学图像处理、面孔识别、特征识别、显微图像处理和汽车障碍识别等。

数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。

数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。

参考资料来源:百度百科-图像处理。

图像处理的算法有哪些

图像处理基本算法操作从处理对象的多少可以有如下划分:一)点运算:处理点单元信息的运算二)群运算:处理群单元 (若干个相邻点的集合)的运算1.二值化操作图像二值化是图像处理中十分常见且重要的操作,它是将灰度图像转换为二值图像或灰度图像的过程。

二值化操作有很多种,例如一般二值化、翻转二值化、截断二值化、置零二值化、置零翻转二值化。2.直方图处理 直方图是图像处理中另一重要处理过程,它反映图像中不同像素值的统计信息。

从这句话我们可以了解到直方图信息仅反映灰度统计信息,与像素具体位置没有关系。这一重要特性在许多识别类算法中直方图处理起到关键作用。

3.模板卷积运算模板运算是图像处理中使用频率相当高的一种运算,很多操作可以归结为模板运算,例如平滑处理,滤波处理以及边缘特征提取处理等。

这里需要说明的是模板运算所使用的模板通常说来就是NXN的矩阵(N一般为奇数如3,5,7,...),如果这个矩阵是对称矩阵那么这个模板也称为卷积模板,如果不对称则是一般的运算模板。

我们通常使用的模板一般都是卷积模板。如边缘提取中的Sobel算子模板。

图像识别的算法 100

yolo算法是什么?

Yolo是一种目标检测算法。目标检测的任务是从图片中找出物体并给出其类别和位置,对于单张图片,输出为图片中包含的N个物体的每个物体的中心位置(x,y)、宽(w)、高(h)以及其类别。

Yolo的预测基于整个图片,一次性输出所有检测到的目标信号,包括其类别和位置。Yolo首先将图片分割为sxs个相同大小的grid。

介绍Yolo只要求grid中识别的物体的中心必须在这个grid内(具体来说,若某个目标的中心点位于一个grid内,该grid输出该目标类别的概率为1,所有其他grid对该目标预测概率设置为0)。

实现方法:让sxs个框每个都预测出B个boungding box,bounding box有5个量,分别为物体的x,y,h,w和预测的置信度;每个grid预测B个bounding box和物体类别,类别使用one-hot表示。

 


http://chatgpt.dhexx.cn/article/m24jUCNd.shtml

相关文章

CNN图像识别_算法篇

CNN图像识别_算法篇 前言Keras1外层循环2中部循环3内部循环 Matlab CNN ToolBox总结 前言 CNN算法方面主要参考的的zh_JNU同学的工作和Deep-Learning-ToolBox-CNN-master的Matlab源码,然后也做了些修改和解读。 Keras 数据库是5钟分类的400张训练数据和100张测试…

人工智能图像识别四大算子

文章目录 背景引入图像识别发展简介边缘检测算法*Prewitt算子**Sobel算子**Laplace算子**Conny算子* * 文末寄语* 背景引入 图像识别是当今计算机科学最热门的研究方向之一。随着科学技术的发展和人类社会的不断进步,图像识别技术在很多行业得到了广泛的应用。本章…

图像识别算法(一)

目录 一、图像识别 二、最近邻分类器(Nearest Neighbor Classifier) 三、k-最近邻分类器(k - Nearest Neighbor Classifier) 四、超参数的设置(Hyperparameter) 五、分析 一、图像识别 对于人脑来说&a…

遗传算法(Genetic Algorithm)解析

00 目录 遗传算法定义生物学术语问题导入大体实现具体细节代码实现 01 什么是遗传算法? 1.1 遗传算法的科学定义 遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一…

遗传算法的手工模拟计算示例(通俗易懂)(包含遗传算法原理、遗传算法代码)

下面是关于“遗传算法”的几个不错的学习资源 遗传算法介绍及手工模拟计算示例(文字版) 遗传算法介绍及手工模拟计算示例(视频讲解版) 遗传算法原理介绍(包含二进制编码、解码原理,算法实现,视…

神经网络中的遗传算法

简 介: 人工神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。遗传算法是一种引入自然选择和进化思想的优化算法,具有优良的全局寻优性能。在神经网络中借助遗传算法进行网络优化,可以充分利用两者…

遗传算法(Genetic Algorithm)

1、遗传算法的基本思想 遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。 遗传算法(Genetic Algorithm, GA)起…

遗传算法基本原理

遗传算法基本原理 1.遗传算法 GA是基于“物竞天择、适者生存”原理的一种高度并行、随机和自适应优化算法,它将问题的求解表示成“染色体"(chromosome)适者生存的进化过程,通过种群(population)的一代代不断进化,通过选择(selection)、交叉(cross…

多目标遗传算法NSGA-II原理详解及算法实现

在接触学习多目标优化的问题上,经常会被提及到多目标遗传算法NSGA-II,网上也看到了很多人对该算法的总结,但真正讲解明白的以及配套用算法实现的文章很少,这里也对该算法进行一次详解与总结。会有侧重点的阐述,不会针对…

一文搞懂什么是遗传算法Genetic Algorithm【附应用举例】

代码链接放文末。 本文参考了很多张军老师《计算智能》的第四章内容。 本文来源:https://blog.csdn.net/qq_44186838/article/details/109181453 遗传算法 1.1 遗传算法简介 1.1.1 基本原理 重温高中生物哈哈! 遗传算法(Genetic Algor…

遗传算法的基本原理和matlab实现

2016年9月7日星期三 T.s.road 总结笔记 遗传算法解决全局优化(即为最值点如图中C,D),而局部最优解决的是极值点问题(如图中A,B) 1. 遗传算法流程; %遗传算法的伪代码描述&…

遗传算法(三)——基本遗传算法

目录 2.基本遗传算法 2.1基本遗传算法描述 2.1.1基本遗传算法的构成要素 2.1.2基本遗传算法描述 2.1.3基本遗传算法的形式化定义 2.2基本遗传算法的实现 2.2.1个体适应度评价 2.2.2比例选择算子 2.2.3单点交叉算子 2.2.4基本位变异算子 2.3基本遗传算法应用举例 2.3…

遗传算法原理以及matlab代码

目录 1,算法原理以及形象解释 2,参数编码 3,算法框架 4,代码 MATLAB 1,算法原理以及形象解释 遗传算法(Genetic Algorithm, GA)是仿生物智能优化算法,是模拟达尔文生物进化论中…

遗传算法的基本原理

1、简介 遗传算法是一种基于自然选择和群体遗传机理的搜索算法,它模拟了自然选择和自然遗传过程中的繁殖、杂交和突变现象.再利用遗传算法求解问题时,问题的每一个可能解都被编码成一个“染色体”,即个体,若干个个体构成了群体(所有可能解).在遗传算法开始时,总是随机的产生一些…

遗传算法原理介绍

前言 遗传算法( genetic algorithm,GA)是模拟自然界生物进化机制的一种算法,即遵循适者生存、优胜劣汰的法则,也就是寻优过程中有用的保留无用的则去除。在科学和生产实践中表现为在所有可能的解决方法中找出最符合该问题所要求的条件的解决方法,即找出一个最优解。…

遗传算法原理及其matlab程序实现

遗传算法原理及其matlab实现 一、遗传算法背景二、遗传算法原理及其数学模型2.1 编码方式2.1.1 二进制编码2.1.2 浮点数编码 2.2 种群初始化2.3 计算初始种群的适应度函数值2.4 对初始种群个体进行筛选—天泽(以轮盘赌方式进行选择)2.5 个体染色体交叉及…

遗传算法原理及其python实现

遗传算法原理 基本思想: 遗传算法(Genetic Algorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则,它最初由美国Michigan大学的J. Holland教授于1967年提出。遗传算法…

智能算法——遗传算法原理、应用汇总

一、遗传算法原理 遗传算法(GA)是一种基于生物界规律和自然遗传机制的并行搜索算法。1975 年,J. Holland 教授首次在书中提出“自然组合人工智能系统的适应性”。它是一种多参数,多组合同时优化方法,模拟自然进化过程中…

遗传算法原理

一、遗传算法简介 遗传算法是进化算法的一个分支. 它将达尔文的进化理论搬进了计算机. 科学定义如下: **遗传算法(Genetic Algorithm, GA)**起源于对生物系统所进行的计算机模拟研究。它是模仿自然界生物进化机制发展起来的随机全局搜索和优…

遗传算法

目录 一、算法原理 二、代码实现 三、结果分析 优化目标函数为Rastrigin(x) 目标函数为Schaffer(x) 目标函数为Griewank(x) 总结 一、算法原理 1、基本原理 遗传算法是一种典型的启发式算法,属于非数值算法范畴。其目的是抽象和严谨地解释自然界的适应过程以…