遗传算法(Genetic Algorithm)

article/2025/10/18 11:02:52

1、遗传算法的基本思想

遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

遗传算法(Genetic Algorithm, GA)起源于对生物系统所进行的计算机模拟研究。它是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,借鉴了达尔文的进化论和孟德尔的遗传学说。其本质是一种高效、并行、全局搜索的方法,能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程以求得最佳解。

遗传算法(Genetic Algorithm)遵循自然界“适者生存、优胜劣汰”的原则,是一类借鉴生物界自然选择和自然遗传机制随机化搜索算法

达尔文进化论的主要观点是:物竞天择,适者生存。遗传算法(Genetic Algorithm)的基本思想就是模仿自然进化过程,通过对群体中具有某种结构形式的个体进行遗传操作,从而生成新的群体,逐渐逼近最优解。在求解过程中设定一个固定规模的种群,种群中的每个个体都表示问题的一个可能解,个体适应环境的程度用适应度函数判断,适应度差的个体被淘汰,适应度好的个体得以继续繁衍,繁衍的过程中可能要经过选择、交叉、变异,形成新的族群,如此往复,最后得到更多更好的解。

2、遗传算法的主要步骤

(1)编码:将问题的候选解用染色体表示,实现解空间向编码空间的映射过程。遗传算法不直接处理解空间的决策变量,而是将其转换成由基因按一定结构组成的染色体。编码方式有很多,如二进制编码、实数向量编码、整数排列编码、通用数据结构编码等等。本文将采用二进制编码的方式,将十进制的变量转换成二进制,用0和1组成的数字串模拟染色体,可以很方便地实现基因交叉、变异等操作。

(2)种群初始化:产生代表问题可能潜在解集的一个初始群体(编码集合)。种群规模设定主要有以下方面的考虑:从群体多样性方面考虑,群体越大越好,避免陷入局部最优;从计算效率方面考虑,群体规模越大将导致计算量的增加。应该根据实际问题确定种群的规模。产生初始化种群的方法通常有两种:一是完全随机的方法产生;二是根据先验知识设定一组必须满足的条件,然后根据这些条件生成初始样本。

(3)计算个体适应度:利用适应度函数计算各个个体的适应度大小。适应度函数(Fitness Function)的选取直接影响到遗传算法的收敛速度以及能否找到最优解,因为在进化搜索中基本不利用外部信息,仅以适应度函数为依据,利用种群每个个体的适应程度来指导搜索。

(4)进化计算:通过选择、交叉、变异,产生出代表新的解集的群体。选择(selection):根据个体适应度大小,按照优胜劣汰的原则,淘汰不合理的个体;交叉(crossover):编码的交叉重组,类似于染色体的交叉重组;变异(mutation):编码按小概率扰动产生的变化,类似于基因突变。

(5)解码:末代种群中的最优个体经过解码实现从编码空间向解空间的映射,可以作为问题的近似最优解。这是整个遗传算法的最后一步,经过若干次的进化过程,种群中适应度最高的个体代表问题的最优解,但这个最优解还是一个由0和1组成的数字串,要将它转换成十进制才能供我们理解和使用。

3、遗传算法的参数设计原则

(1)种群的规模
种群不宜过大也不宜过小。种群规模的一个建议值为0-100。
(2)变异概率
变异概率也不宜过大或者过小。一般取值为0.0001-0.2。
(3)交换概率
不宜过大或者过小。一般取值 为0.4-0.99。
(4)进化代数
不宜过大或者过小。一般取值为100-500。
(5)种群初始化
初始种群的生成是随机的。在初始种群的赋予之前,尽量进行一个大概的区间估计,避免初始种群分布在远离最优解的编码空间,导致遗传算法的搜索范围受到限制。

4、代码实现

(1)主函数 main.m

function main()
clear;
clc;
%种群大小
popsize=100;
%二进制编码长度
chromlength=10;
%交叉概率
pc = 0.6;
%变异概率
pm = 0.001;
%初始种群
pop = initpop(popsize,chromlength);
for i = 1:100%计算适应度值(函数值)objvalue = cal_objvalue(pop);fitvalue = objvalue;%选择操作newpop = selection(pop,fitvalue);%交叉操作newpop = crossover(newpop,pc);%变异操作newpop = mutation(newpop,pm);%更新种群pop = newpop;%寻找最优解[bestindividual,bestfit] = best(pop,fitvalue);x2 = binary2decimal(bestindividual);x1 = binary2decimal(newpop);y1 = cal_objvalue(newpop);if mod(i,10) == 0figure;fplot('10*sin(5*x)+7*abs(x-5)+10',[0 10]);hold on;plot(x1,y1,'*');title(['迭代次数为n=' num2str(i)]);%plot(x1,y1,'*');end
end
fprintf('The best X is --->>%5.2f\n',x2);
fprintf('The best Y is --->>%5.2f\n',bestfit);

(2)二进制种群生成的方法 initpop.m

%初始化种群大小
%输入变量:
%popsize:种群大小
%chromlength:染色体长度-->>转化的二进制长度
%输出变量:
%pop:种群
function pop=initpop(popsize,chromlength)
pop = round(rand(popsize,chromlength));
%rand(3,4)生成3行4列的0-1之间的随机数
% rand(3,4)
% 
% ans =
% 
%     0.8147    0.9134    0.2785    0.9649
%     0.9058    0.6324    0.5469    0.1576
%     0.1270    0.0975    0.9575    0.9706
%round就是四舍五入
% round(rand(3,4))=
% 1 1 0 1
% 1 1 1 0
% 0 0 1 1
%所以返回的种群就是每行是一个个体,列数是染色体长度

(3)把二进制返回对应的十进制 binary2decimal.m

%二进制转化成十进制函数
%输入变量:
%二进制种群
%输出变量
%十进制数值
function pop2 = binary2decimal(pop)
[px,py]=size(pop);
for i = 1:pypop1(:,i) = 2.^(py-i).*pop(:,i);
end
%sum(.,2)对行求和,得到列向量
temp = sum(pop1,2);
pop2 = temp*10/1023;

(4)计算适应度函数 cal_objvalue.m

%计算函数目标值
%输入变量:二进制数值
%输出变量:目标函数值
function [objvalue] = cal_objvalue(pop)
x = binary2decimal(pop);
%转化二进制数为x变量的变化域范围的数值
objvalue=10*sin(5*x)+7*abs(x-5)+10;

(5)选择新的个体 selection.m

%如何选择新的个体
%输入变量:pop二进制种群,fitvalue:适应度值
%输出变量:newpop选择以后的二进制种群
function [newpop] = selection(pop,fitvalue)
%构造轮盘
[px,py] = size(pop);
totalfit = sum(fitvalue);
p_fitvalue = fitvalue/totalfit;
p_fitvalue = cumsum(p_fitvalue);%概率求和排序
ms = sort(rand(px,1));%从小到大排列
fitin = 1;
newin = 1;
while newin<=pxif(ms(newin))<p_fitvalue(fitin)newpop(newin,:)=pop(fitin,:);newin = newin+1;elsefitin=fitin+1;end
end

(6)交叉 crossover.m

%交叉变换
%输入变量:pop:二进制的父代种群数,pc:交叉的概率
%输出变量:newpop:交叉后的种群数
function [newpop] = crossover(pop,pc)
[px,py] = size(pop);
newpop = ones(size(pop));
for i = 1:2:px-1if(rand<pc)cpoint = round(rand*py);newpop(i,:) = [pop(i,1:cpoint),pop(i+1,cpoint+1:py)];newpop(i+1,:) = [pop(i+1,1:cpoint),pop(i,cpoint+1:py)];elsenewpop(i,:) = pop(i,:);newpop(i+1,:) = pop(i+1,:);end
end

(7)变异 mutation.m

%关于编译
%函数说明
%输入变量:pop:二进制种群,pm:变异概率
%输出变量:newpop变异以后的种群
function [newpop] = mutation(pop,pm)
[px,py] = size(pop);
newpop = ones(size(pop));
for i = 1:pxif(rand<pm)mpoint = round(rand*py);if mpoint <= 0;mpoint = 1;endnewpop(i,:) = pop(i,:);if newpop(i,mpoint) == 0newpop(i,mpoint) = 1;else newpop(i,mpoint) == 1newpop(i,mpoint) = 0;endelse newpop(i,:) = pop(i,:);end
end

(8)选择最优个体 best.m

%求最优适应度函数
%输入变量:pop:种群,fitvalue:种群适应度
%输出变量:bestindividual:最佳个体,bestfit:最佳适应度值
function [bestindividual, bestfit] = best(pop,fitvalue)
[px,py] = size(pop);
bestindividual = pop(1,:);
bestfit = fitvalue(1);
for i = 2:pxif fitvalue(i)>bestfitbestindividual = pop(i,:);bestfit = fitvalue(i);end
end

5、遗传算法应用案例(----待续)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

转载链接:
https://www.cnblogs.com/LoganChen/p/7509702.html
https://www.jianshu.com/p/374624820e3a
https://blog.csdn.net/ztf312/article/details/78426864
https://github.com/franciscoserdio/Genetic-Algorithms-Toolbox
https://github.com/Shuai-Xie/genetic-algorithm


http://chatgpt.dhexx.cn/article/DtJSRn3C.shtml

相关文章

遗传算法基本原理

遗传算法基本原理 1.遗传算法 GA是基于“物竞天择、适者生存”原理的一种高度并行、随机和自适应优化算法&#xff0c;它将问题的求解表示成“染色体"(chromosome)适者生存的进化过程,通过种群(population)的一代代不断进化&#xff0c;通过选择(selection)、交叉(cross…

多目标遗传算法NSGA-II原理详解及算法实现

在接触学习多目标优化的问题上&#xff0c;经常会被提及到多目标遗传算法NSGA-II&#xff0c;网上也看到了很多人对该算法的总结&#xff0c;但真正讲解明白的以及配套用算法实现的文章很少&#xff0c;这里也对该算法进行一次详解与总结。会有侧重点的阐述&#xff0c;不会针对…

一文搞懂什么是遗传算法Genetic Algorithm【附应用举例】

代码链接放文末。 本文参考了很多张军老师《计算智能》的第四章内容。 本文来源&#xff1a;https://blog.csdn.net/qq_44186838/article/details/109181453 遗传算法 1.1 遗传算法简介 1.1.1 基本原理 重温高中生物哈哈&#xff01; 遗传算法&#xff08;Genetic Algor…

遗传算法的基本原理和matlab实现

2016年9月7日星期三 T.s.road 总结笔记 遗传算法解决全局优化&#xff08;即为最值点如图中C&#xff0c;D&#xff09;&#xff0c;而局部最优解决的是极值点问题&#xff08;如图中A&#xff0c;B&#xff09; 1. 遗传算法流程&#xff1b; %遗传算法的伪代码描述&…

遗传算法(三)——基本遗传算法

目录 2.基本遗传算法 2.1基本遗传算法描述 2.1.1基本遗传算法的构成要素 2.1.2基本遗传算法描述 2.1.3基本遗传算法的形式化定义 2.2基本遗传算法的实现 2.2.1个体适应度评价 2.2.2比例选择算子 2.2.3单点交叉算子 2.2.4基本位变异算子 2.3基本遗传算法应用举例 2.3…

遗传算法原理以及matlab代码

目录 1&#xff0c;算法原理以及形象解释 2&#xff0c;参数编码 3&#xff0c;算法框架 4&#xff0c;代码 MATLAB 1&#xff0c;算法原理以及形象解释 遗传算法&#xff08;Genetic Algorithm, GA&#xff09;是仿生物智能优化算法&#xff0c;是模拟达尔文生物进化论中…

遗传算法的基本原理

1、简介 遗传算法是一种基于自然选择和群体遗传机理的搜索算法,它模拟了自然选择和自然遗传过程中的繁殖、杂交和突变现象.再利用遗传算法求解问题时,问题的每一个可能解都被编码成一个“染色体”,即个体,若干个个体构成了群体(所有可能解).在遗传算法开始时,总是随机的产生一些…

遗传算法原理介绍

前言 遗传算法( genetic algorithm,GA)是模拟自然界生物进化机制的一种算法,即遵循适者生存、优胜劣汰的法则&#xff0c;也就是寻优过程中有用的保留无用的则去除。在科学和生产实践中表现为在所有可能的解决方法中找出最符合该问题所要求的条件的解决方法,即找出一个最优解。…

遗传算法原理及其matlab程序实现

遗传算法原理及其matlab实现 一、遗传算法背景二、遗传算法原理及其数学模型2.1 编码方式2.1.1 二进制编码2.1.2 浮点数编码 2.2 种群初始化2.3 计算初始种群的适应度函数值2.4 对初始种群个体进行筛选—天泽&#xff08;以轮盘赌方式进行选择&#xff09;2.5 个体染色体交叉及…

遗传算法原理及其python实现

遗传算法原理 基本思想&#xff1a; 遗传算法&#xff08;Genetic Algorithm&#xff0c;GA&#xff09;是一种进化算法&#xff0c;其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则&#xff0c;它最初由美国Michigan大学的J. Holland教授于1967年提出。遗传算法…

智能算法——遗传算法原理、应用汇总

一、遗传算法原理 遗传算法&#xff08;GA&#xff09;是一种基于生物界规律和自然遗传机制的并行搜索算法。1975 年&#xff0c;J. Holland 教授首次在书中提出“自然组合人工智能系统的适应性”。它是一种多参数&#xff0c;多组合同时优化方法&#xff0c;模拟自然进化过程中…

遗传算法原理

一、遗传算法简介 遗传算法是进化算法的一个分支. 它将达尔文的进化理论搬进了计算机. 科学定义如下&#xff1a; **遗传算法&#xff08;Genetic Algorithm, GA&#xff09;**起源于对生物系统所进行的计算机模拟研究。它是模仿自然界生物进化机制发展起来的随机全局搜索和优…

遗传算法

目录 一、算法原理 二、代码实现 三、结果分析 优化目标函数为Rastrigin(x) 目标函数为Schaffer(x) 目标函数为Griewank(x) 总结 一、算法原理 1、基本原理 遗传算法是一种典型的启发式算法&#xff0c;属于非数值算法范畴。其目的是抽象和严谨地解释自然界的适应过程以…

遗传算法(GA)详解

遗传算法&#xff08;GA&#xff09;详解 遗传算法主要作用是求解最优解&#xff0c;例如求函数极值&#xff0c;或是飞机巡航问题中的最短巡航路线的求解等&#xff0c;其作用与模拟退火算法的作用较为相似。本文将从GA算法的原理&#xff0c;结构与两个实践应用进行比较详细…

html中热区如何设置,Dreamweaver中如何设置热区?DW设置热区方法图解

Dreamweaver中如何设置热区?下面小编就为大家详细介绍一下&#xff0c;一起来看看吧&#xff01; 方法/步骤 向平时一样&#xff0c;这里我们在设置Dreamweaver热区的时候。同样这里是需要建立一个新的HTML界面的。 建立完毕&#xff0c;如下图中所示的一个新的文档(HTML) 按照…

用html编写或在dw中完成,Dreamweaver教程-在 Dreamweaver 中编写 HTML 代码

Dreamweaver教程-在 Dreamweaver 中编写 HTML 代码,代码,教程,标签,光标,文本 Dreamweaver教程-在 Dreamweaver 中编写 HTML 代码 易采站长站&#xff0c;站长之家为您整理了Dreamweaver教程-在 Dreamweaver 中编写 HTML 代码的相关内容。 1.启动 Dreamweaver CS5 2.点击左上角…

dw写HTML怎么设置背景颜色,dreamweaver cs6设置div背景颜色的具体操作教程

最近有不少刚刚接触dreamweaver cs6的伙伴们&#xff0c;并不是很熟悉其中是怎么设置div背景颜色?本期为你们分享的文章就讲述dreamweaver cs6设置div背景颜色的具体流程介绍。 dreamweaver cs6设置div背景颜色的具体操作教程 首先需要打开dreamweaver cs6软件&#xff0c;添加…

dw html转为css,DIV+CSS辅助软件Dreamweaver介绍

DIVCSS开发软件之Adobe Dreamweaver介绍 接下来我们(www.divcss5.com)给大家介绍是大家最熟悉不过的软件Adobe Dreamweaver&#xff0c;他被称为网页三剑客之一主要成员。 Dreamweaver我们常称他为DW,是开发DIVCSS比较好的工具。 Dreamweaver特点 1、开发css具体完善快捷简便提…

html中水平线颜色代码,网页设计水平线代码 怎么在dw中修改水平线的颜色

在Dreamweaver里有以下办法&#xff1a; 设计视图&#xff0c;点插入菜单-HTML-水平线&#xff0c;或者在代码视图&#xff0c;直接输入即可&#xff1b; 插入一个高度为1px的表格或div&#xff0c;一定要删除空格符 &#xff0c;div的话还要设置超出隐藏&#xff1b; 可以用CS…

html基础dw,HTML基础DW使用教程

1、打开文件拓展名&#xff1a; 方法一.打开计算机→组→文件夹和搜索选项→查看&#xff0c;把隐藏拓展名的勾取掉。 方法二.打开计算机→文件夹选项→查看&#xff0c;把隐藏拓展名的勾取掉。 2.桌面新建一个记事本&#xff0c;把.txt后缀改成HTML。 3.右键打开方式&#xff…