MIC 的指标解读

article/2025/9/29 17:10:33

MIC 的指标解读

1.Sensitivity 灵敏度

麦克风是支持以声压信号为输入,最后转换为电信号的传感器。sensitivity是microphone 能够capture的最小声压信号,声压信号的单位为dBSPL.sensitivity 是ratio ,是模拟输出电压或者数字输出值对于输入的声压来说,也是模拟MIC和数字MIC的关键性参数。

将声学域中的单位映射到电域中的单位决定了给定已知输入的麦克风输出信号。

本文将讨论模拟话筒和数字话筒在灵敏度规格上的区别,以及如何选择具有最佳灵敏度的话筒,以及为什么增加一点(或更多)数字增益可以增强麦克风信号。

 

analog vs digital 

sensitivity 采用了一个94dBSPL/1Pa的声音输入为参考标准。人耳的声音阈值是20uPa,dBSPL=20log(P/Po),Po=20uPa,

dBSPL=20log(P/Po)=20log(1Pa/20uPa)=94dBSPL.

analog mic 的sensitivity 采用对数dB来表示,以1V/Pa为参考标准,它的意义在于表述对于给定的声音dBSPL,Analog MIC会有多大的voltage output.

Sensitivity(dBV)=20*log(Sensitivity(mv/Pa)/Output(AREF)),Output(AREF)=1000mv/Pa=1V/Pa.

analog mic 信号经精准的前置放大增益,mic 的信号电平可以和系统或者电流的电平匹配起来。下图显示了mic 的peak out voltage Vmax和ADC 的full-scale input voltage Vin 在前置增益Vin/Vmax的配置下的对应关系。比如,ADMP504输出Vmax=0.25v,在4倍增益(12dB)的前置放大下,对应着ADC的full-scale 1.0V.

 

digital microphone sensitivity 不会很灵活,maximum acoustic input  决定了 灵敏度。灵敏度等于最大声压输入和94dBSPL 参考声压的差值。比如,数字mic的maxium SPL 是120dBSPL,它的sensitivity 就是94-120=-26dBFS.

对于数字话筒,灵敏度以百分比表示由94 dB SPL输入产生的满标度输出。对于数字话筒,转换方程为

Sensitivity dBFS=20log10(Sensitivity %FS/Output DREF)

Output DREF is full-scale digital output level.

Figure 2. Mapping acoustic input level to (a) voltage output
level for an analog microphone; (b) digital output level for
a digital microphone.
对于mic 选型的灵敏度考量

并不是越大越好,需要考虑应用的场景,选择适合的灵敏度mic.

In near-field applications, such as cell phones, where the
microphone is close to the sound source, a microphone
with higher sensitivity is more likely to reach the maximum
acoustic input, clip, and cause distortion. On the other hand,
a higher sensitivity may be desirable in far-field applications,
such as conference phones and security cameras, where the
sound is attenuated as the distance from the source to the
microphone increases. Figure 3 shows how the distance of
the microphone from the sound source can affect the SPL.
The level of an acoustic signal decreases by 6 dB (one-half)
each time the distance from the source is doubled.
 

 


http://chatgpt.dhexx.cn/article/lJVLAW92.shtml

相关文章

MIC一般参数指标

SNR>68dB&#xff0c; 灵敏度>-34dB&#xff0c;频响范围&#xff1a;/-3dB &#xff08;300Hz-3kHz&#xff09;&#xff1b;失真度&#xff1a;<3% 麦克风的灵敏度高好还是低&#xff0c;要根据你使用的条件来选择。如果声源离麦克风较远&#xff0c;需用灵敏度高的…

Maximal Information Coefficient (MIC)最大互信息系数

MIC 我在论文使用MIC来衡量两个基因之间的关联程度&#xff0c;线性或非线性关系&#xff0c;相较于Mutual Information&#xff08;MI&#xff09;互信息而言有更高的准确度巴拉巴拉的&#xff0c;按作者的话说总之比其他的方式好。 原文参照&#xff1a; Detecting Novel A…

R+树

考虑R树的性能&#xff0c;其中覆盖(coverage)和重叠(overlap)两个概念很重要&#xff0c;因为R树查询是根据给定区域与当前MBR是否有交叉来判断, 因此覆盖和重叠都应当尽量小 覆盖小即MBR要小&#xff0c;最好刚好包围其中的数据点 (对于叶节点)或子MBR (对于非叶节点) 重叠…

R树及其应用场景

地理围栏&#xff08;Geo-fencing&#xff09;是LBS的一种应用&#xff0c;就是用一个虚拟的栅栏围出一个虚拟地理边界&#xff0c;当手机进入、离开某个特定地理区域&#xff0c;或在该区域内活动时&#xff0c;手机可以接收自动通知和警告。如下图所示&#xff0c;假设地图上…

R树与空间索引

B树或者B树可以非常好的处理一维空间存储的问题。B树是一棵平衡树&#xff0c;它是把一维直线分为若干段线段&#xff0c;当我们查找满足某个要求的点的时候&#xff0c;只要去查找它所属的线段即可。依我看来&#xff0c;这种思想其实就是先找一个大的空间&#xff0c;再逐步缩…

R语言学习(三)——决策树分类

分类 分类&#xff08;Classification&#xff09;任务就是通过学习获得一个目标函数&#xff08;Target Function&#xff09;f, 将每个属性集x映射到一个预先定义好的类标号y。 分类任务的输入数据是记录的集合&#xff0c;每条记录也称为实例或者样例。用元组(X,y)表示&am…

空间数据索引RTree(R树)完全解析及Java实现

本文是在https://www.cnblogs.com/cmi-sh-love/p/kong-jian-shud-ju-suo-yinRTree-wan-quan-jie-xi-jiJa.html?share_tokene5b096d7-6dbf-4839-9992-b29913335ba9基础上进行修改和补充的。 第一部分 空间数据的背景介绍 空间数据的建模 基于实体的模型&#xff08;基于对象…

最小生成树:kruskal算法的R语言实现

以如下图为例 library(hash)#需要用到hash包 Nodes<-c("A","B","C","D","E","F","G") #创建存放顶点的向量 edges<- data.frame(startcharacter(),endcharacter(),lengthnumeric(),stringsAsFa…

【转】R树

R树在数据库等领域做出的功绩是非常显著的。它很好的解决了在高维空间搜索等问题。举个R树在现实领域中能够解决的例子吧&#xff1a;查找20英里以内所有的餐厅。如果没有R树你会怎么解决&#xff1f;一般情况下我们会把餐厅的坐标(x,y)分为两个字段存放在数据库中&#xff0c;…

R语言实现决策树

R语言实现决策树 提示&#xff1a;本文使用R语言实现决策树&#xff0c;并对决策树结构图进行美化 文章目录 R语言实现决策树数据介绍一、相关R包的下载二、实现过程1.数据读取2.训练集与验证集划分3.构建决策树并绘制图形4.测试模型 总结 数据介绍 group就是分类结果&#x…

决策树与R语言(RPART)

关于决策树理论方面的介绍&#xff0c;李航的《统计机器学习》第五章有很好的讲解。 传统的ID3和C4.5一般用于分类问题&#xff0c;其中ID3使用信息增益进行特征选择&#xff0c;即递归的选择分类能力最强的特征对数据进行分割&#xff0c;C4.5唯一不同的是使用信息增益比进行…

经典查找算法 --- R树

R树&#xff1a;处理空间存储问题 -->是引用别人的文章 相信经过上面第一节的介绍&#xff0c;你已经对B树或者B树有所了解。这种树可以非常好的处理一维空间存储的问题。B树是一棵平衡树&#xff0c;它是把一维直线分为若干段线段&#xff0c;当我们查找满足某个要求的点的…

R语言︱决策树族——随机森林算法

每每以为攀得众山小&#xff0c;可、每每又切实来到起点&#xff0c;大牛们&#xff0c;缓缓脚步来俺笔记葩分享一下吧&#xff0c;please~ ——————————————————————————— 笔者寄语&#xff1a;有一篇《有监督学习选择深度学习还是随机森林或支持向…

R语言:画树图

原始数据长这样&#xff1a; “iyear”表示年份&#xff1b;“nkill”表示死亡人数&#xff1b;“region”表示地区&#xff1b;“总计”表示某年份死亡总人数&#xff1b;nkii里的缺失数据自动按“0”运算。 数据存储在名为“ljs”的csv格式里。 应提前下载好treemap包&#…

图解R树的内部结构及操作

本文是在https://blog.csdn.net/baimafujinji/article/details/89810217基础上增加了自己的理解和解释形成的。 R树的基本情况 R树&#xff08;R-tree&#xff09;是一种将&#xff22;树&#xff08;B树和B树统称B树&#xff09;扩展到多维情况下得到的数据结构&#xff0c;…

R树

先搞明白R树搜索、插入、删除过程。 R树是平衡树&#xff0c;可以理解为B树在N维空间上的扩展。 R树一定要满足一下要求&#xff1a; 1&#xff0e;根节点若非叶子节点&#xff0c;则至少有两个子节点&#xff1b; 2&#xff0e;每个非根叶节点和非叶节点包含的实体个数均介…

R tree

R树在数据库等领域做出的功绩是非常显著的。它很好的解决了在高维空间搜索等问题。举个R树在现实领域中能够解决的例子吧&#xff1a;查找20英里以内所有的餐厅。如果没有R树你会怎么解决&#xff1f;一般情况下我们会把餐厅的坐标(x,y)分为两个字段存放在数据库中&#xff0c;…

R树空间索引

R树在数据库等领域做出的功绩是非常显著的。它很好的解决了在高维空间搜索等问题。举个R树在现实领域中能够解决的例子吧&#xff1a;查找20英里以内所有的餐厅。如果没有R树你会怎么解决&#xff1f;一般情况下我们会把餐厅的坐标(x,y)分为两个字段存放在数据库中&#xff0c;…

搜索树之R树

产生背景 地理空间数据涉及各种海量且复杂的数据&#xff0c;找到合适的索引对空间数据的处理至关重要。 传统的B树索引针对字符、数字等一维属性数据的主关键字而设计&#xff0c;不适用于具有多维性的地理空间数据。 在GIS和CAD系统对空间索引需求的推动下&#xff0c;为满足…

R-Tree

R-Tree ​ R-Tree是一颗用来存储高维数据的平衡树&#xff0c;它把B树的思想扩展到了多维空间&#xff0c;采用了B树分割空间思想&#xff0c;并在添加、删除操作时采用合并、分解节点的方法&#xff0c;保证树的平衡性。 数据结构 ​ 每个R树的叶子节点包含了多个指向不同数…