(1)步骤
剪枝的一般步骤只是在正常训练的后面加上了稀疏化训练和剪枝的步骤。
(2)稀疏化训练

主要区别
稀疏化训练的代码和正常训练的代码的差别主要体现在
①反向传播 ②优化器 ③parse_opt代码
接下来从代码执行训练简单分析
(下面代码均为稀疏化训练的代码)
(1)parse_opt代码
加入了这两行!!!
parser.add_argument('--st', action='store_true',default=True, help='train with L1 sparsity normalization')parser.add_argument('--sr', type=float, default=0.0001, help='L1 normal sparse rate')
sr:平衡因子lamda(就是论文里面的这个红圈里面的东西)

(2)反向传播
train.py
# Backwardscaler.scale(loss).backward()
train_sparsity.py
loss.backward()
③优化器
# Optimizeif ni - last_opt_step >= accumulate:scaler.step(optimizer) # optimizer.stepscaler.update()optimizer.zero_grad()if ema:ema.update(model)last_opt_step = ni
# # ============================= sparsity training ========================== #srtmp = opt.sr*(1 - 0.9*epoch/epochs)if opt.st:ignore_bn_list = []for k, m in model.named_modules():if isinstance(m, Bottleneck):if m.add:ignore_bn_list.append(k.rsplit(".", 2)[0] + ".cv1.bn")ignore_bn_list.append(k + '.cv1.bn')ignore_bn_list.append(k + '.cv2.bn')if isinstance(m, nn.BatchNorm2d) and (k not in ignore_bn_list):m.weight.grad.data.add_(srtmp * torch.sign(m.weight.data)) # L1m.bias.grad.data.add_(opt.sr*10 * torch.sign(m.bias.data)) # L1# # ============================= sparsity training ========================== #
1)for k, m in model.named_modules() 此处使用k,m两个变量是因为model.named_modules()在网络中的所有模块上返回一个迭代器,该迭代器不仅包含模块名称,还包含模块本身。因此在这段代码中k应该是模块名称,m应该是模块本身
2)不进行稀疏化的内容
图片来自知乎的博主

3)调节权重和bias
m.weight.grad.data.add_(srtmp * torch.sign(m.weight.data)) # L1m.bias.grad.data.add_(opt.sr*10 * torch.sign(m.bias.data)) # L1
直接给出稀疏化训练的完整代码:
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Train a YOLOv5 model on a custom dataset.Models and datasets download automatically from the latest YOLOv5 release.
Models: https://github.com/ultralytics/yolov5/tree/master/models
Datasets: https://github.com/ultralytics/yolov5/tree/master/data
Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-DataUsage:$ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (RECOMMENDED)$ python path/to/train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch
"""import argparse
import math
import os
import random
import sys
import time
from copy import deepcopy
from datetime import datetime
from pathlib import Pathimport numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import SGD, Adam, AdamW, lr_scheduler
from tqdm import tqdmFILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relativeimport val # for end-of-epoch mAP
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.autobatch import check_train_batch_size
from utils.callbacks import Callbacks
from utils.datasets import create_dataloader
from utils.downloads import attempt_download
from utils.general import (LOGGER, check_dataset, check_file, check_git_status, check_img_size, check_requirements,check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds,intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle,print_args, print_mutation, strip_optimizer)
from utils.loggers import Loggers
from utils.loggers.wandb.wandb_utils import check_wandb_resume
from utils.loss import ComputeLoss
from utils.metrics import fitness
from utils.plots import plot_evolve, plot_labels
from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first
from models.common import BottleneckLOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv('RANK', -1))
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))def train(hyp, # path/to/hyp.yaml or hyp dictionaryopt,device,callbacks):save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze# Directoriesw = save_dir / 'weights' # weights dir(w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dirlast, best = w / 'last.pt', w / 'best.pt'# Hyperparametersif isinstance(hyp, str):with open(hyp, errors='ignore') as f:hyp = yaml.safe_load(f) # load hyps dictLOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))# Save run settingsif not evolve:with open(save_dir / 'hyp.yaml', 'w') as f:yaml.safe_dump(hyp, f, sort_keys=False)with open(save_dir / 'opt.yaml', 'w') as f:yaml.safe_dump(vars(opt), f, sort_keys=False)# Loggersdata_dict = Noneif RANK in [-1, 0]:loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instanceif loggers.wandb:data_dict = loggers.wandb.data_dictif resume:weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size# Register actionsfor k in methods(loggers):callbacks.register_action(k, callback=getattr(loggers, k))# Configplots = not evolve # create plotscuda = device.type != 'cpu'init_seeds(1 + RANK)with torch_distributed_zero_first(LOCAL_RANK):data_dict = data_dict or check_dataset(data) # check if Nonetrain_path, val_path = data_dict['train'], data_dict['val']nc = 1 if single_cls else int(data_dict['nc']) # number of classesnames = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class namesassert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # checkis_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset# Modelcheck_suffix(weights, '.pt') # check weightspretrained = weights.endswith('.pt')if pretrained:with torch_distributed_zero_first(LOCAL_RANK):weights = attempt_download(weights) # download if not found locallyckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leakmodel = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # createexclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keyscsd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersectmodel.load_state_dict(csd, strict=False) # loadLOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # reportelse:model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create# Freezefreeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freezefor k, v in model.named_parameters():v.requires_grad = True # train all layersif any(x in k for x in freeze):LOGGER.info(f'freezing {k}')v.requires_grad = False# Image sizegs = max(int(model.stride.max()), 32) # grid size (max stride)imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple# Batch sizeif RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch sizebatch_size = check_train_batch_size(model, imgsz)loggers.on_params_update({"batch_size": batch_size})# Optimizernbs = 64 # nominal batch sizeaccumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizinghyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decayLOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")g0, g1, g2 = [], [], [] # optimizer parameter groupsfor v in model.modules():if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # biasg2.append(v.bias)if isinstance(v, nn.BatchNorm2d): # weight (no decay)g0.append(v.weight)elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)g1.append(v.weight)if opt.optimizer == 'Adam':optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentumelif opt.optimizer == 'AdamW':optimizer = AdamW(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentumelse:optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decayoptimizer.add_param_group({'params': g2}) # add g2 (biases)LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "f"{len(g0)} weight (no decay), {len(g1)} weight, {len(g2)} bias")del g0, g1, g2# Schedulerif opt.cos_lr:lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']else:lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linearscheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)# EMAema = ModelEMA(model) if RANK in [-1, 0] else None# Resumestart_epoch, best_fitness = 0, 0.0if pretrained:# Optimizerif ckpt['optimizer'] is not None:optimizer.load_state_dict(ckpt['optimizer'])best_fitness = ckpt['best_fitness']# EMAif ema and ckpt.get('ema'):ema.ema.load_state_dict(ckpt['ema'].float().state_dict())ema.updates = ckpt['updates']# Epochsstart_epoch = ckpt['epoch'] + 1if resume:assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'if epochs < start_epoch:LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")epochs += ckpt['epoch'] # finetune additional epochsdel ckpt, csd# DP modeif cuda and RANK == -1 and torch.cuda.device_count() > 1:LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n''See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')model = torch.nn.DataParallel(model)# SyncBatchNormif opt.sync_bn and cuda and RANK != -1:model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)LOGGER.info('Using SyncBatchNorm()')print(model)# Trainloadertrain_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,hyp=hyp, augment=True, cache=None if opt.cache == 'val' else opt.cache,rect=opt.rect, rank=LOCAL_RANK, workers=workers,image_weights=opt.image_weights, quad=opt.quad,prefix=colorstr('train: '), shuffle=True)mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label classnb = len(train_loader) # number of batchesassert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'# Process 0if RANK in [-1, 0]:val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,hyp=hyp, cache=None if noval else opt.cache,rect=True, rank=-1, workers=workers * 2, pad=0.5,prefix=colorstr('val: '))[0]if not resume:labels = np.concatenate(dataset.labels, 0)# c = torch.tensor(labels[:, 0]) # classes# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency# model._initialize_biases(cf.to(device))if plots:plot_labels(labels, names, save_dir)# Anchorsif not opt.noautoanchor:check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)model.half().float() # pre-reduce anchor precisioncallbacks.run('on_pretrain_routine_end')# DDP modeif cuda and RANK != -1:model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)# Model attributesnl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)hyp['box'] *= 3 / nl # scale to layershyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layershyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layershyp['label_smoothing'] = opt.label_smoothingmodel.nc = nc # attach number of classes to modelmodel.hyp = hyp # attach hyperparameters to modelmodel.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weightsmodel.names = names# Start trainingt0 = time.time()nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of traininglast_opt_step = -1maps = np.zeros(nc) # mAP per classresults = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)scheduler.last_epoch = start_epoch - 1 # do not movescaler = amp.GradScaler(enabled=cuda)stopper = EarlyStopping(patience=opt.patience)compute_loss = ComputeLoss(model) # init loss classLOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'f"Logging results to {colorstr('bold', save_dir)}\n"f'Starting training for {epochs} epochs...')for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------model.train()# Update image weights (optional, single-GPU only)if opt.image_weights:cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weightsiw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weightsdataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx# Update mosaic border (optional)# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)# dataset.mosaic_border = [b - imgsz, -b] # height, width bordersmloss = torch.zeros(3, device=device) # mean lossesif RANK != -1:train_loader.sampler.set_epoch(epoch)pbar = enumerate(train_loader)LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))if RANK in [-1, 0]:pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress baroptimizer.zero_grad()for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------ni = i + nb * epoch # number integrated batches (since train start)imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0# Warmupif ni <= nw:xi = [0, nw] # x interp# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())for j, x in enumerate(optimizer.param_groups):# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])if 'momentum' in x:x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])# Multi-scaleif opt.multi_scale:sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # sizesf = sz / max(imgs.shape[2:]) # scale factorif sf != 1:ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)# Forwardwith amp.autocast(enabled=cuda):pred = model(imgs) # forwardloss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_sizeif RANK != -1:loss *= WORLD_SIZE # gradient averaged between devices in DDP modeif opt.quad:loss *= 4.# Backward# scaler.scale(loss).backward()loss.backward()# # ============================= sparsity training ========================== #srtmp = opt.sr*(1 - 0.9*epoch/epochs)if opt.st:ignore_bn_list = []for k, m in model.named_modules():if isinstance(m, Bottleneck):if m.add:ignore_bn_list.append(k.rsplit(".", 2)[0] + ".cv1.bn")ignore_bn_list.append(k + '.cv1.bn')ignore_bn_list.append(k + '.cv2.bn')if isinstance(m, nn.BatchNorm2d) and (k not in ignore_bn_list):m.weight.grad.data.add_(srtmp * torch.sign(m.weight.data)) # L1m.bias.grad.data.add_(opt.sr*10 * torch.sign(m.bias.data)) # L1# # ============================= sparsity training ========================== ## Optimize# if ni - last_opt_step >= accumulate:optimizer.step()# scaler.step(optimizer) # optimizer.step# scaler.update()optimizer.zero_grad()if ema:ema.update(model)# last_opt_step = ni# Logif RANK in [-1, 0]:mloss = (mloss * i + loss_items) / (i + 1) # update mean lossesmem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn)if callbacks.stop_training:return# end batch ------------------------------------------------------------------------------------------------# Schedulerlr = [x['lr'] for x in optimizer.param_groups] # for loggersscheduler.step()# =============== show bn weights ===================== #module_list = []for i, layer in model.named_modules():if isinstance(layer, nn.BatchNorm2d) and i not in ignore_bn_list:bnw = layer.state_dict()['weight']bnb = layer.state_dict()['bias']module_list.append(bnw)size_list = [idx.data.shape[0] for idx in module_list]bn_weights = torch.zeros(sum(size_list))bnb_weights = torch.zeros(sum(size_list))index = 0for idx, size in enumerate(size_list):bn_weights[index:(index + size)] = module_list[idx].data.abs().clone() index += sizeif RANK in [-1, 0]:# mAPcallbacks.run('on_train_epoch_end', epoch=epoch)ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])final_epoch = (epoch + 1 == epochs) or stopper.possible_stopif not noval or final_epoch: # Calculate mAPresults, maps, _ = val.run(data_dict,batch_size=batch_size // WORLD_SIZE * 2,imgsz=imgsz,model=ema.ema,single_cls=single_cls,dataloader=val_loader,save_dir=save_dir,plots=False,callbacks=callbacks,compute_loss=compute_loss)# Update best mAPfi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]if fi > best_fitness:best_fitness = fi#log_vals = list(mloss) + list(results) + lr + [srtmp]log_vals = list(mloss) + list(results) + lrcallbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)callbacks.run('on_fit_epoch_end_prune', bn_weights.numpy(), epoch)# Save modelif (not nosave) or (final_epoch and not evolve): # if saveckpt = {'epoch': epoch,'best_fitness': best_fitness,'model': deepcopy(de_parallel(model)).half(),'ema': deepcopy(ema.ema).half(),'updates': ema.updates,'optimizer': optimizer.state_dict(),'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None,'date': datetime.now().isoformat()}# Save last, best and deletetorch.save(ckpt, last)if best_fitness == fi:torch.save(ckpt, best)if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0):torch.save(ckpt, w / f'epoch{epoch}.pt')del ckptcallbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)# Stop Single-GPUif RANK == -1 and stopper(epoch=epoch, fitness=fi):break# Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576# stop = stopper(epoch=epoch, fitness=fi)# if RANK == 0:# dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks# Stop DPP# with torch_distributed_zero_first(RANK):# if stop:# break # must break all DDP ranks# end epoch ----------------------------------------------------------------------------------------------------# end training -----------------------------------------------------------------------------------------------------if RANK in [-1, 0]:LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')for f in last, best:if f.exists():strip_optimizer(f) # strip optimizersif f is best:LOGGER.info(f'\nValidating {f}...')results, _, _ = val.run(data_dict,batch_size=batch_size // WORLD_SIZE * 2,imgsz=imgsz,model=attempt_load(f, device).half(),iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65single_cls=single_cls,dataloader=val_loader,save_dir=save_dir,save_json=is_coco,verbose=True,plots=True,callbacks=callbacks,compute_loss=compute_loss) # val best model with plotsif is_coco:callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)callbacks.run('on_train_end', last, best, plots, epoch, results)LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")torch.cuda.empty_cache()return resultsdef parse_opt(known=False):parser = argparse.ArgumentParser()parser.add_argument('--st', action='store_true',default=True, help='train with L1 sparsity normalization')parser.add_argument('--sr', type=float, default=0.0001, help='L1 normal sparse rate')parser.add_argument('--weights', type=str, default=ROOT / 'yolov5l.pt', help='initial weights path')parser.add_argument('--cfg', type=str, default='', help='model.yaml path')parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')parser.add_argument('--epochs', type=int, default=300)parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')parser.add_argument('--rect', action='store_true', help='rectangular training')parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')parser.add_argument('--noval', action='store_true', help='only validate final epoch')parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')parser.add_argument('--name', default='exp', help='save to project/name')parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')parser.add_argument('--quad', action='store_true', help='quad dataloader')parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')# Weights & Biases argumentsparser.add_argument('--entity', default=None, help='W&B: Entity')parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option')parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')opt = parser.parse_known_args()[0] if known else parser.parse_args()return optdef main(opt, callbacks=Callbacks()):# Checksif RANK in [-1, 0]:print_args(FILE.stem, opt)check_git_status()check_requirements(exclude=['thop'])# Resumeif opt.resume and not check_wandb_resume(opt) and not opt.evolve: # resume an interrupted runckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent pathassert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f:opt = argparse.Namespace(**yaml.safe_load(f)) # replaceopt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstateLOGGER.info(f'Resuming training from {ckpt}')else:opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checksassert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'if opt.evolve:if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolveopt.project = str(ROOT / 'runs/evolve')opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resumeopt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))# DDP modedevice = select_device(opt.device, batch_size=opt.batch_size)if LOCAL_RANK != -1:msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'assert not opt.image_weights, f'--image-weights {msg}'assert not opt.evolve, f'--evolve {msg}'assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'torch.cuda.set_device(LOCAL_RANK)device = torch.device('cuda', LOCAL_RANK)dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")# Trainif not opt.evolve:train(opt.hyp, opt, device, callbacks)if WORLD_SIZE > 1 and RANK == 0:LOGGER.info('Destroying process group... ')dist.destroy_process_group()# Evolve hyperparameters (optional)else:# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1'weight_decay': (1, 0.0, 0.001), # optimizer weight decay'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr'box': (1, 0.02, 0.2), # box loss gain'cls': (1, 0.2, 4.0), # cls loss gain'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight'iou_t': (0, 0.1, 0.7), # IoU training threshold'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)'translate': (1, 0.0, 0.9), # image translation (+/- fraction)'scale': (1, 0.0, 0.9), # image scale (+/- gain)'shear': (1, 0.0, 10.0), # image shear (+/- deg)'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001'flipud': (1, 0.0, 1.0), # image flip up-down (probability)'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)'mosaic': (1, 0.0, 1.0), # image mixup (probability)'mixup': (1, 0.0, 1.0), # image mixup (probability)'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)with open(opt.hyp, errors='ignore') as f:hyp = yaml.safe_load(f) # load hyps dictif 'anchors' not in hyp: # anchors commented in hyp.yamlhyp['anchors'] = 3opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indicesevolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'if opt.bucket:os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if existsfor _ in range(opt.evolve): # generations to evolveif evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate# Select parent(s)parent = 'single' # parent selection method: 'single' or 'weighted'x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)n = min(5, len(x)) # number of previous results to considerx = x[np.argsort(-fitness(x))][:n] # top n mutationsw = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)if parent == 'single' or len(x) == 1:# x = x[random.randint(0, n - 1)] # random selectionx = x[random.choices(range(n), weights=w)[0]] # weighted selectionelif parent == 'weighted':x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination# Mutatemp, s = 0.8, 0.2 # mutation probability, sigmanpr = np.randomnpr.seed(int(time.time()))g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1ng = len(meta)v = np.ones(ng)while all(v == 1): # mutate until a change occurs (prevent duplicates)v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)hyp[k] = float(x[i + 7] * v[i]) # mutate# Constrain to limitsfor k, v in meta.items():hyp[k] = max(hyp[k], v[1]) # lower limithyp[k] = min(hyp[k], v[2]) # upper limithyp[k] = round(hyp[k], 5) # significant digits# Train mutationresults = train(hyp.copy(), opt, device, callbacks)callbacks = Callbacks()# Write mutation resultsprint_mutation(results, hyp.copy(), save_dir, opt.bucket)# Plot resultsplot_evolve(evolve_csv)LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'f"Results saved to {colorstr('bold', save_dir)}\n"f'Usage example: $ python train.py --hyp {evolve_yaml}')def run(**kwargs):# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')opt = parse_opt(True)for k, v in kwargs.items():setattr(opt, k, v)main(opt)return optif __name__ == "__main__":opt = parse_opt()main(opt)
直接把完整代码给到你们
链接:https://pan.baidu.com/s/1MRSjUoe9pWKWsOEpFRKTMw?pwd=adzm
提取码:adzm












