清风数学建模学习笔记——层次分析法(AHP)

article/2025/9/12 3:06:08

层次分析法

  层次分析法(analytic hierarchy process),简称AHP。是建模比赛中比较基础的模型之一,其主要解决评价类的问题。如选择哪种方案最好,哪位员工表现最好等。

  它是一个较为 主观 的评价方法,其在赋权得到权重向量的时候,主观因素占比很大。因而在建模比赛中,常常与客观方法得到的权重向量方法进行综合,而得出一个综合的权重向量,进行后续操作。

  本文借鉴了数学建模清风老师的课件与思路,如果大家发现文章中有不正确的地方,欢迎大家在评论区留言,也可以点击查看右侧链接查看清风老师视频讲解:清风数学建模:https://www.bilibili.com/video/BV1DW411s7wi


目录

  • 层次分析法
  • 一、建模步骤
  • 二、模型实现
  • 三、模型扩展★)
  • 四、模型总结


一、建模步骤

层次分析法进行建模,大致分为以下四步:

① 分析系统中各因素之间的关系,建立系统的递阶层次结构。
② 对于同一层次的个元素关于上一层次中某一准则的重要性两两比较,构造两两比较矩阵(判断矩阵)
③ 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验(检验通过权重才能用)。
④ 填充权重矩阵,根据矩阵计算得分,得出结果。

接下来,我们根据例题讲解,并在相应出进行解释。


二、模型实现

  例:小明同学想出去旅游。在查阅了网上的攻略后,他初步选择了苏杭、北戴河和桂林三地之一作为目标景点。请你确定评价指标、形成评价体系来为小明同学选择最佳的方案。


1. 分析系统中各因素之间的关系,建立系统的递阶层次结构。

首先,需要明确以下三个问题:

  1. 我们评价的 目标 是什么?  答:为小明同学选择最佳的旅游景点。
  2. 评价的 准则 或者说指标是什么?(我们根据什么东西来评价好坏)  答:景色、花费、居住、饮食、交通。
  3. 我们为了达到这个目标有哪几种可选的 方案 ?  答:三种,分别是去苏杭、去北戴河和去桂林。

根据以上问题,建立层次结构图,旅游地选择层次结构图如下:

在这里插入图片描述


2. 对于同一层次的个元素关于上一层次中某一准则的重要性两两比较,构造两两比较矩阵(判断矩阵)。

那么如何构造这个判断矩阵呢?需要构造几个呢?有什么意义呢?接下来我们一一回答。

首先,我们先来看看层次分析法最终要得出的结果是什么样子的:

在这里插入图片描述

实际上的建模结果就是要填满权重矩阵,即这个表格:

  • 其中,蓝色一列代表景色、花费、居住、饮食以及交通的权重,加和为1。(实际上就是准则层关于上一层目标层的重要性)
  • 然后同一颜色每一横行,就是三种方案相对于准则层的重要性。如:橙色一行 代表的就是苏杭、北戴河以及桂林关于景色的权重,以此类推。

如何填满这个表格,就需要用判断矩阵得出,这也是构造判断矩阵的意义!


然后,我们看一下如何构造这个判断矩阵,要构造几个?

  由上文可知得到这个判断矩阵实际上要分别得出准则层关于目标层的一组权重向量,方案层关于准则层的五组权重向量,实际上我们就需要构造出一个准则层关于目标层的判断矩阵以及五个方案层关于准则层的矩阵,一共六个判断矩阵。(这里采用分治的思想)最终在经过权重计算每组得出一组权重向量,填到相应的表格中。构造的6个判断矩阵如下:

在这里插入图片描述


接下来,我们看一下,每个位置应该怎么填。

  注意:这个位置不是随便填的,因为影响因子占比很大,有可能第一天我们看重景色,把景色权重写的占比大一些,第二天我们看重饮食了,就把饮食占比大一些,因而常常考虑不周全,而使得不易定量化。所以需要两两比较得出判断矩阵,而两两比较得出重要性填到矩阵中。重要程度如下表:

标度含义
1表示两个因素相比,具有同样重要性
3表示两个因素相比,一个因素比另一个因素稍微重要
5表示两个因素相比,一个因素比另一个因素明显重要
7表示两个因素相比,一个因素比另一个因素强烈重要
9表示两个因素相比,一个因素比另一个因素极端重要
2、4、6、8上述两相邻判断的中值
倒数A和B相比如果标度为3,那么B和A相比就是1/3

根据以上这个表格,我们人为的进行填充,得到了下面这个判断矩阵:(实际情况下都是专家填的,但是比赛中大都是我们自己填的,最好有一些理论的依据支撑)

在这里插入图片描述

观察一下:上面这个判断矩阵有如下特点:

  1. aij 表示的意义是,与指标j相比, i的重要程度。
  2. 当i= j时,两个指标相同,因此同等重要记为1,这就解释了主对角线元素为1
  3. aj >0 且满足 aij × aji = 1 (我们称满足这一条件的矩阵为正互反矩阵)

其余五个矩阵如下图:

在这里插入图片描述
在这里插入图片描述


3. 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验(检验通过权重才能用)。

思考一个问题,拿方案层关于景色的矩阵说明,假设我们填写的判断矩阵是这个样子:

在这里插入图片描述

假设:苏杭 = A、北戴河 = B、桂林 = C,
那么由矩阵可以看出,苏杭比北戴河景色好一点 A > B,苏杭和桂林景色一样好 A = C,北戴河比桂林景色好一点 B > C,出现了 矛盾!

这里就不得不提出一个概念叫做 一致矩阵,它在正互反矩阵性质的基础上没有以上的矛盾,可以说:一致矩阵是正互反矩阵的特例。
将上面的矩阵进行改良,得到一致矩阵:

在这里插入图片描述

它比正互反矩阵多出两个性质:

  1. aij = i的重要程度 / j的重要程度,ajk = j的重要程度 / k的重要程度,aik = i的重要程度 / k的重要程度 = aij × ajk。
  2. 矩阵各行(各列)之间成倍数关系。

  我们进行构造矩阵大多是正互反矩阵,难免会出现矛盾,即不容易构造出一致性矩阵,但是我们可以向一致性矩阵靠拢,只要这个差距(CR)不超过一个范围(0.1)那么这个判断矩阵也是可以使用的。这个判断差距的过程叫做 一致性检验

接下来正式讲解一下一致性检验。


证明过程(只需要了解,可以直接看步骤):

一致性检验原理: 检验我们构造的判断矩阵和一致矩阵是否有太大的差别。

[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] 为一致矩阵的充要条件: { a i j > 0 a 11 = a 22 = ⋯ = a n n = 1 [ a i 1 , a i 2 , ⋯ , a i n ] = k i [ a 11 , a 12 , ⋯ , a 1 n ] (注:也可以定义为列与列) \begin{bmatrix} a_{11} & a_{12} & \cdots &a_{1n} \\ a_{21}& a_{22} & \cdots &a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}& a_{n2} & \cdots &a_{nn} \end{bmatrix} 为一致矩阵的充要条件:\begin{cases} & \text a_{ij}>0 \\ & \text a_{11}=a_{22}=\cdots=a_{nn}=1\\ &\text [a_{i1}, a_{i2},\cdots,a_{in} ] = k_i[a_{11}, a_{12},\cdots,a_{1n} ] \\& \text(注:也可以定义为列与列)\end{cases} a11a21an1a12a22an2a1na2nann 为一致矩阵的充要条件: aij>0a11=a22==ann=1[ai1,ai2,,ain]=ki[a11,a12,,a1n]注:也可以定义为列与列)

引理: A 为 n 阶方阵,且 A 的秩 r(A) = 1,则 A 有一个特征值为 A 的迹 tr(A),其余特征值均为0。因为一致矩阵的各行成比例且不是零矩阵,所以一致矩阵的秩一定为1。

由引理可知: 一致矩阵有一个特征值为 n,其余特征值均为 0。

另外,我们很容易可以得到,特征值为 n 时,对应的特征向量刚好为:

k [ 1 a 11 , 1 a 12 , ⋯ , 1 a 1 n ] T ( k ≠ 0 ) k\left[ \frac {1} {a_{11}},\frac {1} {a_{12}},\cdots,\frac {1} {a_{1n}} \right] ^T(k≠0) k[a111,a121,,a1n1]T(k=0)

此外,n 阶正互反矩阵 A 为一致矩阵时当且仅当最大特征值 λ m a x = n λ_{max} = n λmax=n,且当正互反矩阵 A 非一致时,一定满足 λ m a x > n λ_{max} > n λmax>n总而言之,判断矩阵越不一致时,最大特征值与 n 相差就越大。


一致性检验的步骤:

第一步:计算一致性指标 CI
C I = λ m a x − n n − 1 CI=\frac{\lambda_{max}-n}{n-1} CI=n1λmaxn

第二步:查找对应的平均随机一致性指标 RI

在这里插入图片描述
注:在实际运用中,n很少超过10,如果指标的个数大于10,则可考虑建立二级指标体系,或使用我们以后要学习的模糊综合评价模型。此外,RI 可以直接查表使用即可。

第三步:计算一致性比例CR

C R = C I R I CR=\frac{CI}{RI} CR=RICI

如果 CR < 0.1, 则可认为判断矩阵的一致性可以接受;否则需要对判断矩阵进行修正。

当然本道例题上面的6个矩阵已经通过了一致性检验,然后接下来要根据判断矩阵计算权重。


4. 填充权重矩阵,根据矩阵计算得分,得出结果。

计算权重的方法有三种:算数平均法求权重、几何平均法求权重和特征值法求权重。

一般情况下:第三种特征值法求权重是最常用的,但是建议可以综合三种方法来求得一个综合的权重向量。

下面拿下面这个判断矩阵进行说明:
在这里插入图片描述


方法1:算术平均法求权重

第一步: 将判断矩阵按照列归一化(每个元素除以其所在列的和,如1/(1+0.5+0.2)=0.5882)
在这里插入图片描述

第二步: 将归一化的列相加(按行求和)
在这里插入图片描述

第三步: 将相加后得到的向量中的每个元素除以 n 即可得到权重向量
在这里插入图片描述
以表达式进行解释:
假设判断矩阵 A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] 假设判断矩阵 A= \begin{bmatrix} a_{11} & a_{12} & \cdots &a_{1n} \\ a_{21}& a_{22} & \cdots &a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}& a_{n2} & \cdots &a_{nn} \end{bmatrix} 假设判断矩阵A= a11a21an1a12a22an2a1na2nann
那么算术平均法求得的权重向量  ω i = 1 n ∑ j = 1 n a i j ∑ k = 1 n a k j , ( i = 1 , 2 , ⋯ , n ) 那么算术平均法求得的权重向量\text { }\omega_i=\frac{1}{n}\sum_{j=1}^{n} {\frac{a_{ij}}{\displaystyle \sum_{k=1}^{n} a_{kj}}},\text { }(i=1,2,\cdots,n) 那么算术平均法求得的权重向量 ωi=n1j=1nk=1nakjaij, (i=1,2,,n)


方法2:几何平均法求权重

第一步: 将A的元素按照行相乘得到一个新的列向量

第二步: 将新的向量的每个分量开n次方

第三步: 对该列向量进行归一化即可得到权重向量

以表达式进行解释:

假设判断矩阵 A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] 假设判断矩阵 A= \begin{bmatrix} a_{11} & a_{12} & \cdots &a_{1n} \\ a_{21}& a_{22} & \cdots &a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}& a_{n2} & \cdots &a_{nn} \end{bmatrix} 假设判断矩阵A= a11a21an1a12a22an2a1na2nann
那么几何平均法求得的权重向量  ω i = ( ∏ j = 1 n a i j ) 1 n ∑ k = 1 n ( ∏ j = 1 n a k j ) 1 n , ( i = 1 , 2 , ⋯ , n ) 那么几何平均法求得的权重向量\text { }\omega_i=\frac{ (\displaystyle\prod_{j=1}^n a_{ij})^\frac{1}{n}}{\displaystyle\sum_{k=1}^n(\displaystyle\prod_{j=1}^n a_{kj})^\frac{1}{n}},\text { }(i=1,2,\cdots,n) 那么几何平均法求得的权重向量 ωi=k=1n(j=1nakj)n1(j=1naij)n1, (i=1,2,,n)

求得权重结果如图:

在这里插入图片描述


方法3:特征值法求权重

上文在证明一致性检验的时候,提到过如下内容:

由引理可知: 一致矩阵有一个特征值为 n,其余特征值均为 0。
另外,我们很容易可以得到,特征值为 n 时,对应的特征向量刚好为:

k [ 1 a 11 , 1 a 12 , ⋯ , 1 a 1 n ] T ( k ≠ 0 ) k\left[ \frac {1} {a_{11}},\frac {1} {a_{12}},\cdots,\frac {1} {a_{1n}} \right] ^T(k≠0) k[a111,a121,,a1n1]T(k=0)

那么我们我们直接可以将特征向量归一化即可求得特征向量。

求的结果为:
最大特征值为 3.0055,
一致性比例 CR = 0.0053 对应的 特征向量:[-0.8902,-0.4132,-0.1918]
归一化后得到权重向量 : [0.5954,0.2764,0.1283]


我们将三种方法求得的权重向量如下图所示:

在这里插入图片描述

但在实际建模中建议综合三种方法求得的权重得到一个综合的权重向量更具有说服力!


填充权重矩阵

这里只拿第三种的结果填充权重矩阵

在这里插入图片描述

其余的矩阵以此类推,最终得到如下图所示的权重矩阵:

在这里插入图片描述


计算得分,得出最终结果

苏杭得分:指标权重×苏杭与其他两种方案中的权重,即前两列相乘:
0.5954×0.2636+0.0819×0.4758+0.4286×0.0538+0.6337×0.0981+0.1667×0.1087=0.299
同理:北戴河得分为0.245,桂林得分为0.455。

因此最佳的旅游景点是桂林。


三、模型扩展★)

  1. 评价的决策层不能太多,太多的话n会很大,判断矩阵和一致矩阵差异可能会很大。因为平均随机一致性指标 RI 的表格中 n 最多是15,因此应该根据实际情况选择是否应用此方法。
  2. 如果决策层中指标的数据是已知的,那么层次分析法不容易将这些已知数据应用在其中。如拿上面的例题举例:如果已知景色 、花费、居住、饮食以及交通在三个旅游景点的一些数据,那么如何将这些数据转化为构造判断矩阵的依据,只能为其提供一定的文字说明,而不容易将数据应用到其中。
  3. 在实际建模中,判断矩阵的数值都是人为填的,具有一定的主观性存在,这时应该搜寻相应的数据让人信服,不能空口无凭。
  4. 如果说只想拿到的决策因素的权重向量,那大可不必这么麻烦,在第一步递阶层次结构的时候,只需要目标层和准则层即可,构造判断矩阵也只需要构造出一个,并进行检验,检验通过了,差不多就拿到了权重向量。

四、模型总结

总结一下步骤:

  1. 分析系统中各因素之间的关系,建立系统的递阶层次结构
  2. 对于同一层次的个元素关于上一层次中某一准则的重要性两两比较,构造两两比较矩阵(判断矩阵)
  3. 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验(检验通过权重才能用)。
  4. 填充权重矩阵,根据矩阵计算得分,得出结果。

http://chatgpt.dhexx.cn/article/hqg8RH2j.shtml

相关文章

层次分析法-yaahp软件使用

yaahp下载资源&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1Y08-wgn0YTzrDCaqToZLRg 提取码&#xff1a;avkc 目录 一.打开yaahp软件 1.新建AHP空白文件 2.进入画布页面。 3.点击检查模型按钮&#xff0c;检查模型是否正确 二、构造判断矩阵 1.先创建决策…

AHP层次分析法详解

APH简介 起源 层次分析法&#xff08;AHP&#xff09;是美国运筹学家Saaty于上世纪70年代初&#xff0c;应用网络系统理论和多目标综合评价方法&#xff0c;提出的一种层次权重决策分析方法。层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将…

AHP(层次分析法)的全面讲解及python实现

一、层次分析法的使用流程&#xff1a; 1. 建立层次结构模型 首先绘出层次结构图&#xff0c;正常三层是比较常见的&#xff1a;决策的目标、考虑的决策准则因素和决策对象。按它们之间的相互关系分为最高层、中间层和最低层&#xff08;如下图是四层结构的&#xff09; 2. 分…

层次分析法(AHP)基础概念整理+步骤总结

层次分析法是用来根据多种准则&#xff0c;或是说因素从候选方案中选出最优的一种数学方法 递阶层次的建立与特点 一般分为三层&#xff0c;最上面为目标层&#xff0c;最下面为方案层&#xff0c;中间是准则层或指标层。 最顶层是我们的目标&#xff0c;比如说选leader&…

层次分析法(AHP)模型的应用案例

层次分析法&#xff08;AHP&#xff09;模型的特点就是通过搭建递阶的层次结构&#xff0c;把我们生活中的判断事件转化到两两比较层次上面&#xff0c;从而把难于定性的判断来变为可实现数据操作的重要程度方面。在实际情况下&#xff0c;决策者可使用层次分析法&#xff08;A…

层次分析法(AHP)详细步骤

1. 算法简介 层次分析法&#xff08;AHP&#xff09;是美国运筹学家萨蒂于上世纪70年代初&#xff0c;为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”课题时&#xff0c;应用网络系统理论和多目标综合评价方法&#xff0c;提出的一种层次权重决策分…

第一讲 综合评价分析—层次分析法(AHP)

写在前面&#xff1a;本文仅用于记录清风数模课程的笔记总结 AHP的主要特点是通过建立递阶层次结构&#xff0c;把人类的判断转化到若干因 素两两之间重要度的比较上&#xff0c;从而把难于量化的定性判断转化为可操作的重 要度的比较上面。在许多情况下&#xff0c;决策者可以…

层次分析法(AHP法)

目录 一、介绍 二、层次分析法的基本原理 三、层次分析法的主要步骤 四、层次分析法评价过程 1&#xff0c;建立多级阶梯的层次结构 2&#xff0c;求判断矩阵A 3&#xff0c;计算相对权重 1&#xff09;求和法 2&#xff09;求根法 4,结果 5&#xff0c;综合重要度计算 一…

层次分析法(AHP)详解+完整代码

层次分析法&#xff08;AHP&#xff09; 1.算法简述与原理分析 ​ 层次分析法是一种主观赋值评价方法也是一个多指标综合评价算法&#xff0c;常用于综合评价类模型。层次分析法将与决策有关的元素分解成目标、准则、方案等多个层次&#xff0c;并在此基础上进行定性和定量分…

层次分析法(AHP),超详解,进来秒懂!!

层次分析法&#xff0c;简称AHP&#xff0c;是指将与决策总是有关的元素分解成目标、准肌、方案等层次&#xff0c;在此基础之上进行定性和定量分析的决策方法&#xff0c;该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年初提出。 接下来&#xff0c;我会分为四个部分来讲…

AHP层次分析法

层次分析法&#xff08;Analytic Hierarchy Process&#xff0c;简称 AHP&#xff09;是对一些较为复杂、较为模糊的问题作出决策的简易方法&#xff0c;它特别适用于那些难于完全定量分析的问题。人们在进行社会的、经济的以及科学管理领域问题的系统分析中&#xff0c;面临的…

数学建模 -- 层次分析法(AHP)

层次分析法的特点&#xff1a;在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上&#xff0c;利用较少的定量信息使决策的思维过程数学化&#xff0c;从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。是对难于完全定量的复杂系统作出…

层次分析法(AHP)

层次分析法&#xff08;Analytic Hierarchy Process&#xff0c;简称 AHP&#xff09;是对一些较为复杂、较为模糊的问题作出决策的简易方法&#xff0c;它特别适用于那些难于完全定量分析的问题。它是美国运筹学家 T. L. Saaty 教授于上世纪 70 年代初期提出的一种简便、灵活而…

【AHP】层次分析法 | 过程解读 案例实践

层次分析法 | 过程解读 案例实践 导读 本文将带领读者了解 AHP 法&#xff0c;通过案例学习&#xff0c;学会使用 AHP 法解决实际问题。在适当的地方将深入了解&#xff0c;例如 AHP 法过程中出现的不一致情况&#xff0c;我们将详细讨论为什么会出现不一致情况&#xff0c;如…

AHP层次分析法与python代码讲解(处理论文、建模)

目录 AHP是啥 题目 ①构建阶梯层次结构 ②构建判断矩阵 ④综合算术平均法 、几何平均法、特征值法求权重 方法1&#xff1a;算术平均法求权重 一般步骤 表达式解释 代码实现 方法2&#xff1a;几何平均法求权重 一般步骤 表达式解释 代码实现 方法3&#xff…

用人话讲明白AHP层次分析法(非常详细原理+简单工具实现)

用人话讲明白AHP层次分析法&#xff08;非常详细原理简单工具实现&#xff09; 文章目录 目录 1、前言与算法简述 2、AHP层次分析法过程 2.1 构建层次评价模型 2.2 构造判断矩阵 2.3 层次单排序与一致性检验 2.3.1 层次单排序 2.3.2 求解最大特征根与CI值 2.3.3 根据…

微信公众号如何设置开发者密码(APPSecret)?

1.电脑端登录微信公众号&#xff0c;在左侧的导航栏找到</>开发里的“基本配置”&#xff0c;点击进入 2.基本配置页面如下 3.点击开发者密码&#xff08;APPSecret&#xff09;启用按钮 4.有弹窗提示用管理员的微信号扫码后才能操作 5.手机端管理员微信扫码&#xff0c;…

iOS “[App] if we're in the real pre-commit handler we can't actually add any new fences due

最近运行APP&#xff0c;发现了这个问题&#xff0c;本着宁可错看&#xff0c;不可放过的原则&#xff0c;上stackoverFlow学习了一下&#xff1a; 链接&#xff1a;http://stackoverflow.com/questions/38458170/ios-10-app-if-were-in-the-real-pre-commit-handler-we-cant-…

微信小程序重置AppSecret 之后需要做的事情

现在appSecret是密文的如果保存不妥当 需要管理账号用重置 具体位置如下&#xff1a; 点击重置之后 2小时之内程序不会出现任何错误 但是2小时之后 当你打开你的微信小程序之后就会发现有很多接口出现如下错误&#xff1a; invalid appsecret 这个时候只需要联系后端同学 将之…

如何查看小程序的APPID和AppSecret

小程序APPID可以在手机上打开小程序后&#xff0c;点击右上角三点&#xff1a; 然后点击中间位置的小程序名称&#xff0c;进入小程序介绍页面&#xff1a; 点击“更多资料”后&#xff0c;进入页面就可以看到上方有APPID&#xff1a; 另一种方法&#xff1a; 在微信公众平台登…