键盘键值表

article/2025/9/16 21:23:57

键盘键值表


值 描述
0x1 鼠标左键
0x2 鼠标右键
0x3 CANCEL 键
0x4 鼠标中键
0x8 BACKSPACE 键
0x9 TAB 键
0xC CLEAR 键
0xD ENTER 键
0x10 SHIFT 键
0x11 CTRL 键
0x12 MENU 键
0x13 PAUSE 键
0x14 CAPS LOCK 键
0x1B ESC 键
0x20 SPACEBAR 键
0x21 PAGE UP 键
0x22 PAGE DOWN 键
0x23 END 键
0x24 HOME 键
0x25 LEFT ARROW 键
0x26 UP ARROW 键
0x27 RIGHT ARROW 键
0x28 DOWN ARROW 键
0x29 SELECT 键
0x2A PRINT SCREEN 键
0x2B EXECUTE 键
0x2C SNAPSHOT 键
0x2D INSERT 键
0x2E DELETE 键
0x2F HELP 键
0x90 NUM LOCK 键
A 至 Z 键与 A – Z 字母的 ASCII 码相同:
值 描述
65 A 键
66 B 键
67 C 键
68 D 键
69 E 键
70 F 键
71 G 键
72 H 键
73 I 键
74 J 键
75 K 键
76 L 键
77 M 键
78 N 键
79 O 键
80 P 键
81 Q 键
82 R 键
83 S 键
84 T 键
85 U 键
86 V 键
87 W 键
88 X 键
89 Y 键
90 Z 键
0 至 9 键与数字 0 – 9 的 ASCII 码相同:
值 描述
48 0 键
49 1 键
50 2 键
51 3 键
52 4 键
53 5 键
54 6 键
55 7 键
56 8 键
57 9 键
下列常数代表数字键盘上的键:
值 描述
0x60 0 键
0x61 1 键
0x62 2 键
0x63 3 键
0x64 4 键
0x65 5 键
0x66 6 键
0x67 7 键
0x68 8 键
0x69 9 键
0x6A MULTIPLICATION SIGN (*) 键
0x6B PLUS SIGN (+) 键
0x6C ENTER 键
0x6D MINUS SIGN (–) 键
0x6E DECIMAL POINT (.) 键
0x6F DIVISION SIGN (/) 键
下列常数代表功能键:
值 描述
0x70 F1 键
0x71 F2 键
0x72 F3 键
0x73 F4 键
0x74 F5 键
0x75 F6 键
0x76 F7 键
0x77 F8 键
0x78 F9 键
0x79 F10 键
0x7A F11 键
0x7B F12 键
0x7C F13 键
0x7D F14 键
0x7E F15 键
0x7F F16 键


<script language="javascript">
   ns4 = (document.layers) ? true : false;
   ie4 = (document.all) ? true : false;
function keyDown(e){
  if(ns4){
  varnkey=e.which;
  variekey='现在是ns浏览器';
  varrealkey=String.fromCharCode(e.which);
}
  if(ie4){
  variekey=event.keyCode;
  varnkey='现在是ie浏览器';
  varrealkey=String.fromCharCode(event.keyCode);
  if(event.keyCode==32){realkey='\' 空格\''}
  if(event.keyCode==13){realkey='\' 回车\''}
  if(event.keyCode==27){realkey='\' Esc\''}
  if(event.keyCode==16){realkey='\' Shift\''}
  if(event.keyCode==17){realkey='\' Ctrl\''}
  if(event.keyCode==18){realkey='\' Alt\''}
}
   alert('ns浏览器中键值:'+nkey+'\n'+'ie浏览器中键值:'+iekey+'\n'+'实际键为'+realkey);
}
document.onkeydown = keyDown;
if(ns4){
document.captureEvents(Event.KEYDOWN);}
</script>


如何用js获得组合键的代码
原链接:http://www.runup.com.cn/soft/p281/A28134591.shtml
event.altkey   
event.ctrlkey   
event.shiftkey

<script language="javascript">
function test()
{
if (event.shiftkey == true && event.keycode == 81)
{
alert("shift+q");
}
}
</script>
<input οnkeydοwn="test();">

发表者:huis

if(event.srcelement.type !="submit" &&event.srcelement.type!="textarea" && vent.keycode==13)
{
event.shiftkey=true
event.keycode = 9;

}

发表者:jzerobiao

tohuis(美女好难追呀) :
event.shiftkey=true;
是不行的


ESC键 VK_ESCAPE (27)
回车键: VK_RETURN (13)
TAB键: VK_TAB (9)
Caps Lock键: VK_CAPITAL (20)
Shift键: VK_SHIFT ($10)
Ctrl键: VK_CONTROL (17)
Alt键: VK_MENU (18)
空格键: VK_SPACE ($20/32)
退格键: VK_BACK (8)
左徽标键: VK_LWIN (91)
右徽标键: VK_LWIN (92)
鼠标右键快捷键:VK_APPS (93)
Insert键: VK_INSERT (45)
Home键: VK_HOME (36)
Page Up: VK_PRIOR (33)
PageDown: VK_NEXT (34)
End键: VK_END (35)
Delete键: VK_DELETE (46)
方向键(←): VK_LEFT (37)
方向键(↑): VK_UP (38)
方向键(→): VK_RIGHT (39)
方向键(↓): VK_DOWN (40)

F1键: VK_F1 (112)
F2键: VK_F2 (113)
F3键: VK_F3 (114)
F4键: VK_F4 (115)
F5键: VK_F5 (116)
F6键: VK_F6 (117)
F7键: VK_F7 (118)
F8键: VK_F8 (119)
F9键: VK_F9 (120)
F10键: VK_F10 (121)
F11键: VK_F11 (122)
F12键: VK_F12 (123)

Num Lock键: VK_NUMLOCK (144)

键盘0: VK_NUMPAD0 (96)
小键盘1: VK_NUMPAD0 (97)
小键盘2: VK_NUMPAD0 (98)
小键盘3: VK_NUMPAD0 (99)
小键盘4: VK_NUMPAD0 (100)
小键盘5: VK_NUMPAD0 (101)
小键盘6: VK_NUMPAD0 (102)
小键盘7: VK_NUMPAD0 (103)
小键盘8: VK_NUMPAD0 (104)
小键盘9: VK_NUMPAD0 (105)
小键盘.: VK_DECIMAL (110)
小键盘*: VK_MULTIPLY (106)
小键盘+: VK_MULTIPLY (107)
小键盘-: VK_SUBTRACT (109)
小键盘/: VK_DIVIDE (111)
Pause Break键: VK_PAUSE (19)
Scroll Lock键: VK_SCROLL (145)

0x1 鼠标左键
0x2 鼠标右键
0x3 CANCEL 键
0x4 鼠标中键
0x8 BACKSPACE 键
0x9 TAB 键
0xC CLEAR 键
0xD ENTER 键
0x10 SHIFT 键
0x11 CTRL 键
0x12 MENU 键
0x13 PAUSE 键
0x14 CAPS LOCK 键
0x1B ESC 键
0x20 SPACEBAR 键
0x21 PAGE UP 键
0x22 PAGE DOWN 键
0x23 END 键
0x24 HOME 键
0x25 LEFT ARROW 键
0x26 UP ARROW 键
0x27 RIGHT ARROW 键
0x28 DOWN ARROW 键
0x29 SELECT 键
0x2A PRINT SCREEN 键
0x2B EXECUTE 键
0x2C SNAPSHOT 键
0x2D INSERT 键
0x2E DELETE 键
0x2F HELP 键
0x90 NUM LOCK 键
A 至 Z 键与 A – Z 字母的 ASCII 码相同:
值 描述
65 A 键
66 B 键
67 C 键
68 D 键
69 E 键
70 F 键
71 G 键
72 H 键
73 I 键
74 J 键
75 K 键
76 L 键
77 M 键
78 N 键
79 O 键
80 P 键
81 Q 键
82 R 键
83 S 键
84 T 键
85 U 键
86 V 键
87 W 键
88 X 键
89 Y 键
90 Z 键
0 至 9 键与数字 0 – 9 的 ASCII 码相同:
值 描述
48 0 键
49 1 键
50 2 键
51 3 键
52 4 键
53 5 键
54 6 键
55 7 键
56 8 键
57 9 键
下列常数代表数字键盘上的键:
值 描述
0x60 0 键
0x61 1 键
0x62 2 键
0x63 3 键
0x64 4 键
0x65 5 键
0x66 6 键
0x67 7 键
0x68 8 键
0x69 9 键
0x6A MULTIPLICATION SIGN (*) 键
0x6B PLUS SIGN (+) 键
0x6C ENTER 键
0x6D MINUS SIGN (–) 键
0x6E DECIMAL POINT (.) 键
0x6F DIVISION SIGN (/) 键
下列常数代表功能键:
值 描述
0x70 F1 键
0x71 F2 键
0x72 F3 键
0x73 F4 键
0x74 F5 键
0x75 F6 键
0x76 F7 键
0x77 F8 键
0x78 F9 键
0x79 F10 键
0x7A F11 键
0x7B F12 键
0x7C F13 键
0x7D F14 键
0x7E F15 键
0x7F F16 键

 


http://chatgpt.dhexx.cn/article/gEO5gHiC.shtml

相关文章

sklearn机器学习:岭回归Ridge

在sklearn中&#xff0c;岭回归由线性模型库中的Ridge类来调用&#xff1a; Ridge类的格式 sklearn.linear_model.Ridge (alpha1.0, fit_interceptTrue, normalizeFalse, copy_XTrue, max_iterNone, tol0.001, solver’auto’, random_stateNone) 和线性回归相比&#xff0c;…

Python 中 Ridge 和 Lasso 回归的教程

作者&#xff1a;chen_h 微信号 & QQ&#xff1a;862251340 微信公众号&#xff1a;coderpai 线性回归和逻辑回归是回归技术中最受欢迎的技术&#xff0c;但是他们一般很难处理大规模数据问题&#xff0c;很难处理过拟合问题。所以&#xff0c;我们一般都会加上一些正则化技…

多元线性回归改进RidgeLasso

多元线性回归改进 – 潘登同学的Machine Learning笔记 文章目录 多元线性回归改进 -- 潘登同学的Machine Learning笔记(简单回顾)多元线性回归模型归一化normalization归一化的方法来个小例子试一试&#xff1f; 正则化regularization正则项 Lasso回归 和 Ridge岭回归L1稀疏L2平…

岭回归(Ridge)不同alpha值对归回结果的影响

对于有些矩阵&#xff0c;矩阵中某个元素的一个很小的变动&#xff0c;会引起最后计算结果误差很大&#xff0c;这种矩阵称为“病态矩阵”。有些时候不正确的计算方法也会使一个正常的矩阵在运算中表现出病态。对于高斯消去法来说&#xff0c;如果主元&#xff08;即对角线上的…

r ridge回归_手把手带你画高大上的lasso回归模型图

各位芝士好友&#xff0c;今天我们来聊一聊lasso回归算法。与预后有关的文章&#xff0c;传统的做法一般会选择多变量cox回归&#xff0c;高级做法自然就是我们今天的lasso分析。 首先我们先来几篇文献&#xff0c;看一下lasso最近发的两篇文章&#xff0c;如下&#xff1a; 这…

机器学习算法系列(四)- 岭回归算法(Ridge Regression Algorithm)

阅读本文需要的背景知识点&#xff1a;标准线性回归算法、一丢丢编程知识 一、引言 前面一节我们学习了机器学习算法系列&#xff08;三&#xff09;- 标准线性回归算法&#xff08;Standard Linear Regression Algorithm&#xff09;&#xff0c;最后求得标准线性回归的代价函…

手写算法-python代码实现Ridge(L2正则项)回归

手写算法-python代码实现Ridge回归 Ridge简介Ridge回归分析与python代码实现方法一&#xff1a;梯度下降法求解Ridge回归参数方法二&#xff1a;标准方程法实现Ridge回归调用sklearn对比 Ridge简介 前面2篇文章&#xff0c;我们介绍了过拟合与正则化&#xff0c;比较全面的讲了…

线性模型-Ridge-Lasso-回归

目录 1 基本库导入2 线性回归2.1 线性模型性能2.2 使用更高维的数据集 3 岭回归-Ridge3.1 Ridge原理及应用3.2 Ridge调参3.3 为什么要用Ridge 4 Lasso4.1 基本原理及应用4.2 Lasso调参4.3 为什么要用Lasso4.4 Lasso和Ridge的区别&#xff08;L1&#xff0c;L2区别&#xff09; …

利用python实现Ridge岭回归和Lasso回归

正则化 regularization 在介绍Ridge和Lasso回归之前&#xff0c;我们先了解一下正则化 过拟合和欠拟合 (1) under fit&#xff1a;还没有拟合到位&#xff0c;训练集和测试集的准确率都还没有到达最高。学的还不 到位。 (2) over fit&#xff1a;拟合过度&#xff0c;训练…

数学推导+纯Python实现机器学习算法14:Ridge岭回归

点击上方“小白学视觉”&#xff0c;选择加"星标"或“置顶” 重磅干货&#xff0c;第一时间送达 上一节我们讲到预防过拟合方法的Lasso回归模型&#xff0c;也就是基于L1正则化的线性回归。本讲我们继续来看基于L2正则化的线性回归模型。 L2正则化 相较于L0和L1&…

【机器学习】多项式回归案例五:正则惩罚解决过拟合(Ridge回归和Lasso回归)

正则惩罚解决过拟合&#xff08;Ridge回归和Lasso回归&#xff09; 案例五&#xff1a; 正则惩罚解决过拟合&#xff08;Ridge回归和Lasso回归&#xff09;3.2.1 模块加载与数据读入3.2.2 特征工程3.2.3 模型搭建与应用 手动反爬虫&#xff0c;禁止转载&#xff1a; 原博地址 …

07- 梯度下降优化(Lasso/Ridge/ElasticNet) (数据处理+算法)

归一化: 减少数据不同数量级对预测的影响, 主要是将数据不同属性的数据都降到一个数量级。 最大值最小值归一化:优点是可以把所有数值归一到 0~1 之间&#xff0c;缺点受离群值影响较大。0-均值标准化: 经过处理的数据符合标准正态分布&#xff0c;即均值为0&#xff0c;标准差…

Linear Regression:Ridge regression

Ridge regression&#xff1a;岭回归 与least-squares method (最小二乘法)相似&#xff0c;只是加了一个对输入数据权重的惩罚值, 这个惩罚参数称为regularization (正则化)。正则化降低模型的复杂度&#xff0c;防止模型的过度拟合。 Ridge regression 利用L2 regularizatio…

对Lasso可以做特征选择,而Ridge却不行的详细解释

为了限制模型参数的数值大小&#xff0c;就在模型原来的目标函数上加上一个惩罚项&#xff0c;这个过程叫做正则化&#xff08;Regularization&#xff09;。 如果惩罚项是参数的 l 2 l_2 l2​范数&#xff0c;就是岭回归(Ridge Regression)如果惩罚项是参数的 l 1 l_1 l1​范…

Kernel Ridge Regression 详解过程

Kernel Ridge Regression(KRR&#xff0c;核脊回归) 是Ridge Regression(RR&#xff0c;脊回归)的kernel版本&#xff0c;与Support Vector Regression(SVR&#xff0c;支持向量回归)类似。所以&#xff0c;在这里&#xff0c;我们先大致了解RR的来源&#xff0c;由此引入KRR&a…

sklearn-1.1.2.Ridge Regression

1.1.2 Ridge Regression Ridge回归通过对系数的惩罚值来解决最小二乘法的系数问题。岭系数的最小化惩罚残差平方和的公式&#xff1a; 这里&#xff0c;是用来控制收缩量的复杂参数&#xff1a;参数值越大&#xff0c;收缩量也越大&#xff0c;因此系数对共线性变得更加稳健。 …

Ridge回归

岭回归(英文名&#xff1a;ridge regression, Tikhonov regularization)是一种专用于共线性数据分析的有偏估计回归方法&#xff0c;自变量之间线性相关-correlation很高&#xff0c;实质上是一种改良的最小二乘估计法&#xff0c;通过放弃最小二乘法的无偏性&#xff0c;以损失…

Lasso 和 Ridge回归中的超参数调整技巧

在这篇文章中&#xff0c;我们将首先看看Lasso和Ridge回归中一些常见的错误&#xff0c;然后我将描述我通常采取的步骤来优化超参数。代码是用Python编写的&#xff0c;我们主要依赖scikit-learn。本文章主要关注Lasso的例子&#xff0c;但其基本理论与Ridge非常相似。 起初&a…

Ridge和Lasso回归

上周看了看回归方面的知识&#xff0c;顺便复&#xff08;xue&#xff09;习一下Ridge&#xff08;岭回归&#xff09;和Lasso回归&#xff08;套索回归&#xff09;。瞅到了一篇英文博客讲得不错&#xff0c;翻译一下 本文翻译自 Ridge and Lasso Regression 本文是一篇Josh …

Ridge回归*

线性回归稍微总结一下&#xff1a; 常见有普通线性回归&#xff08;没有正则项&#xff0c;目标是最小化均方误差&#xff09;、LASSO&#xff08;均方误差项l-1正则项&#xff09;、Ridge回归&#xff08;均方误差l-2正则项&#xff09; 加上正则项可以降低过拟合风险。 Ridge…