深度学习_图像分割_PANet论文详解

article/2025/9/19 15:38:32

PANet论链接

PANet介绍

这篇文章提出的Path Aggregation Network (PANet)整体上可以看做是在Mask RCNN上做多处改进,充分利用了特征融合:

  • 引入bottom-up path augmentation结构,充分利用网络浅特征进行分割。
  • 引入adaptive feature pooling使得提取到的ROI特征更加丰富。
  • 引入fully-connected fusion,通过融合一个前背景二分类支路的输出得到精确的分割结果。

更加

上图是关于PANet的示意图,主要包含FPN、bottom-up path augmentation、adaptive feature pooling、fully-connected fusion四个部分。

FPN主要是通过融合高底层特征提升目标检测的效果,尤其可以提高小尺寸目标的检测效果。

Bottom-up Path Augmentation的引入主要是考虑网络浅层特征信息对于实例分割非常重要,这个也非常容易理解,毕竟浅层特征多是边缘形状等特征,而实例分割又是像素级别的分类。那么为什么bottom-up path augmentation能保留更多的浅层特征呢?作者在上图中用红绿两个箭头来解释了。红色虚线箭头表示在FPN算法中,因为要走自底向上的过程,浅层的特征传递到顶层要经过几十甚至一百多个网络层(在FPN中,对应上图中那4个蓝色矩形块从下到上分别是ResNet的res2、res3、res4和res5层的输出,层数大概在几十到一百多左右),显然经过这么多层的传递,浅层特征信息丢失会比较厉害。绿色虚线箭头表示作者添加一个bottom-up path augmentation,本身这个结构不到10层,这样浅层特征经过底下原来FPN的lateral connection连接到P2再从P2沿着bottom-up path augmentation传递到顶层,经过的层数就不到10层,能较好地保留浅层特征信息。关于bottom-up path augmentation的具体设计参考后面的Figure2,最后融合得到的特征层是N2、N3、N4、N5,其中N2和P2相同,这些特征层用于后续的预测框分类、回归和mask生成。

Adaptive Feature Pooling主要做的还是特征融合。我们知道在Faster RCNN系列的目标检测或分割算法中,RPN网络得到的ROI需要经过ROI Pooling或ROI Align提取ROI特征,这一步操作中每个ROI所基于的特征都是单层特征(FPN也是如此),比如ResNet网络中常用的res5的输出。而adaptive feature pooling则是将单层特征也换成多层特征,也就是说每个ROI需要和多层特征(文中是4层)做ROI Align的操作,然后将得到的不同层的ROI特征融合在一起,这样每个ROI特征就融合了多层特征。

Fully-connected Fusion是针对原有的分割支路(FCN)引入一个前背景二分类的全连接支路,通过融合这两条支路的输出得到更加精确的分割结果。

下图是bottom-up path augmentation的示意图:

在这里插入图片描述

这是比较常规的特征融合操作,比如 N i N_{i} Ni经过尺寸为 3 × 3 3\times 3 3×3,步长为2的卷积层,特征图尺寸缩减为原来的一半,然后和 P i + 1 P_{i + 1} Pi+1做element-wise add操作,得到的结果再经过尺寸为 3 × 3 3\times 3 3×3,步长为1的卷积层得到 N i + 1 N_{i + 1} Ni+1,特征图尺寸不变。

下面这张图是adaptive feature pooling的示意图:

在这里插入图片描述

RPN网络得到的每个ROI都要分别和N2、N3、N4、N5层特征做ROIAlign操作,这样每个ROI就提取到4个不同的特征图,然后将4个不同的特征图融合在一起就得到最终的特征,后续的分类和回归都是基于最终的特征进行。

之所以引入adaptive feature pooling其实是基于FPN中提取ROI特征的思考,虽然FPN网络基于多层特征做预测,但是每个ROI提取特征时依然是基于单层特征,然而单层特征就足够了吗?于是作者做了下图这个实验,下图中有4条曲线,对应FPN网络中基于4层特征做预测,每一层都会经过RPN网络得到ROI,所以这4条曲线就对应4个ROI集合。横坐标则表示每个ROI集合所提取的不同层特征的占比。比如蓝色曲线代表level1,应该是尺度比较小的ROI集合,这一类型的ROI所提取的特征仅有30%是来自于level1的特征,剩下的70%都来自其他level的特征,leve2、leve3、leve4曲线也是同理,这说明原来RPN网络的做法(level x的ROI所提取的特征100%来自于leve x的特征,x可取1、2、3、4)并不是最佳的。因此就有了特征融合的思考,也就是每个ROI提取不同层的特征并做融合,这对于提升模型效果显然是有利无害。

在这里插入图片描述
下图是fully-connected fusion的示意图:

在这里插入图片描述

主要是在原来的mask支路(Figure4上面那条支路,也就是传统的FCN结构)上增加了Figure4下面那条支路做融合。增加的这条支路包含2个33的卷积层(其中第二个为了降低计算量还将通道缩减为原来的一半),然后接一个全连接层,再经过reshape操作得到维度和上面支路相同的前背景mask,也就是说下面这条支路做的是前景和背景的二分类,因此输出维度类似文中说到的28281。上面这条支路,也就是传统的FCN结构将输出针对每个类别的二分类mask,因此输出的通道就是类别的数量,输出维度类似2828*K,K表示类别数。最终,这两条支路的输出mask做融合得到最终的结果。因此可以看出这里增加了关于每个像素点的前背景分类支路,通过融合这部分特征得到更加精确的分割结果。

实验结果

下图是PANet和Mask RCNN、FCIS算法(COCO2016实例分割算法冠军)在COCO数据集上的分割效果对比。

在这里插入图片描述

Table2是PANet和Mask RCNN、FCIS、RentinaNet算法在COCO数据集上的检测效果对比,优势还是比较明显的(主网络为ResNeXt-101时,单模型效果达到45算很高了)。

在这里插入图片描述


http://chatgpt.dhexx.cn/article/ZR9O0MIV.shtml

相关文章

【小样本分割 2020 ICCV】PANet

文章目录 【小样本分割 2020 ICCV】PANet1. 简介2. 网络2.1 整体架构2.2 原型学习2.3 非参数度量学习2.4 原型对齐正则化 3. 代码3.1 backbone3.2 模型代码 【小样本分割 2020 ICCV】PANet 论文题目:PANet: Few-Shot Image Semantic Segmentation with Prototype Al…

TPanel

TPanel位于Standard组件面板上,也是常用的一种容器控件。面板的一个优点就是放在面板上的组件称为面板的一部分,因此它们与面板一起移动。这在设计阶段很有用。 Panel组件的大部分功能在于其Align属性。例如,想显示标题在窗体上端&#xff0c…

[Neck] 空间金字塔池化【池化策略】(Space Pyramid Pool, SPP)模块和路径聚合网络【增强】(Path Aggregation Network, PANet)的结构

文章目录 背景yolo v4 中的空间金字塔池化(Space Pyramid Pool, SPP)模块和路径聚合网络(Path Aggregation Network, PANet)的结构SPP 模块Abstract IntroductionDeep Networks with Spatial Paramid PoolingTraining the NetworkSPP-Net for Image ClassificationSPP-Net for …

芒果改进YOLOv7系列:首发改进特征融合网络BiFPN结构,融合更多有效特征

💡统一使用 YOLOv7 代码框架,结合不同模块来构建不同的YOLO目标检测模型。文章目录 一、BiFPN论文理论部分代码部分YOLOv7+BiFPN在这篇文章中,将BiFPN结构加入到 YOLOv7 结构中 一、BiFPN论文理论部分 EfficientDet: Scalable and Efficient Object Detection BiFPN与P…

算法笔记(六)多尺度特征融合之FPN/PANet

前言 最近论文快deadline了,一直没空更新…今天复习一下多尺度特征融合的常用操作。 1. FPN 特征金字塔 论文:feature pyramid networks for object detection 论文链接 设计思路: 底层的特征语义信息比较少,但是目标位置准确…

PANet:YOLOv4中的路径聚合网络

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶” 作者:Miracle R 编译:ronghuaiyang 导读 非常简单高效的特征金字塔模块。 是最重要的计算机视觉过程之一,它将图像分割成更小的、多个片段,这样的…

PANet 学习笔记

PANet是18年的一篇CVPR,作者来自港中文,北大,商汤与腾讯优图,PANET可看作Mask-RCNN,是在Mask-RCNN基础上做的几处改进。 Introduce 解决问题: 当前实例分割最佳模型Mask-RCNN的信息传播还不够充分&#…

[小样本图像分割]PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment

PANet:基于原型对齐的Few Shot图像语义分割(ICCV19) 论文地址 开源代码 摘要 本文从度量学习的角度来解决Few Shot Segmentation问题,提出一种新的原型对齐网络来更好地利用支持集信息。PANet从嵌入空间内的一些支持图像中学习特定类的原型…

PANet:基于金字塔注意力网络的图像超分辨率重建(Pytorch实现)

PANet:基于金字塔注意力网络的图像超分辨率重建 [!] 为了提高代码的可读性,本文模型的具体实现与原文具有一定区别,因此会造成性能上的差异 文章目录 PANet:基于金字塔注意力网络的图像超分辨率重建1.相关资料2.简介3.模型结构4.…

resnet50、FPN、Panet结构及代码

起初faster-r-cnn,只采用最后一层特作为rpn以及head部分的特征图 ,后来不断改进,有了FPN, 再后来有了Panet,一般来说网络的层数越深它的语义信息越丰富。但是随着网络层数的加深,检测所需的位置信息就会越差…

实例分割--(PANet)Path Aggregation Network for Instance Segmentation

PANet Path Aggregation Network for Instance Segmentation 收录:CVPR2018(IEEE Conference on Computer Vision and Pattern Recognition) 相关: COCO2017/CityScapes instance segmentation 第一 论文提出了PANet,在Mask R-CNN的基础上…

PANet路径聚合

是最重要的计算机视觉过程之一,它将图像分割成更小的、多个片段,这样的话,目标的表示和进一步的分析就变得简单。这个过程有各种各样的应用,从在医学图像定位肿瘤和发展机器视觉中的生物测量识别的目标检测。图像分割过程主要分为…

PANet 实例分割

Path Aggregation Network for Instance Segmentation(PANet) 用于实例分割的路径聚合网络 代码:https://github.com/ShuLiu1993/PANet CVPR2018 Spotlight paper, coco2017实例分割第一名目标检测第二名 当前实例分割最佳模型Mask-RCNN的…

计算机视觉——day95 PANet:基于样本原型对齐的Few-Shot图像语义分割

PANet:基于样本原型对齐的Few-Shot图像语义分割 1. Introduction2. Related workFew-shot segmentation 3. Method3.1. Problem setting3.2. Method overview3.3. Prototype learning(原型学习)3.4. 非参数度量学习3.5. 原型对准正则化(PAR) 4. Experime…

PANet(2018)

关键:根据提议的ROI在每层特征图上都裁剪相应区域的特征,然后池化为指定大小,然后用max将特征融合。使用融合后的特征做预测 Abstract: 神经网络中信息的流通路径很重要。我们提出PANet,通过增加从最底层到最上层的信息传输路径&…

PANet网络简介

个人总结 简介Bottom-up Path Augmentation待解决: Adaptive Feature Pooling待解决: Fully-connected Fusion 先上论文链接: https://arxiv.org/abs/1803.01534 欢迎交流 简介 这篇论文总体上是Mask-Rcnn的改进版本,整体思路是…

PANet[详解]

一、Abstract摘要&Introduction介绍 Abstract 信息在神经网络中的传播方式非常重要。本文提出了一种基于提议的实例分割框架下的路径聚合网络Path Aggregation Network (PANet),旨在促进信息的流动。具体地说,我们通过自底向上的路径增强&#xff…

深度学习论文导航 | 07 PANet:用于实例分割的路径聚合网络

文章目录 一、PANet简介二、整体结构分析2.1 自底向上的路径增强2.2 自适应特征层2.3 全连接融合层 三、性能表现3.1 在COCO上的测试效果3.2 在Cityscapes 和 MVD上的测试效果 四、总结 前言: 同图像识别、目标检测一样,实例分割也是最重要和最具挑战性的…

(论文阅读)实例分割之PANet

PANet 一、论文简介1.1、论文和代码链接1.2、论文基本信息 二、详细解读2.1、摘要2.2、介绍2.3、网络架构2.4、改进与创新2.5、实验结果2.6、使用的数据集 三、总结与思考 一、论文简介 1.1、论文和代码链接 paper:http://xxx.itp.ac.cn/pdf/1803.01534.pdf code:https://cod…

AI大视觉(十七) | PANet(路径聚合网络)

本文来自公众号“AI大道理”。 这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 ​ 目标检测或者实例分割不仅要关心语义信息,还要关注图像的精确到像素点的浅层信息。 所以需要对骨干网络中的网络层进行融合,使其同时…