TPanel

article/2025/9/19 16:08:23

TPanel位于Standard组件面板上,也是常用的一种容器控件。面板的一个优点就是放在面板上的组件称为面板的一部分,因此它们与面板一起移动。这在设计阶段很有用。

Panel组件的大部分功能在于其Align属性。例如,想显示标题在窗体上端,更进一步假设想让它在中央,不管用户怎样设置窗口尺寸,只需设置Align属性为alTop及Alignment属性为taCenter,这样标题总是在中央的,就是这么简单。

面板有很多种类的外观,它的外观通过BevelInner、BevelOuter、BorderStyle和BorderWidth属性来改变。

TPanel控件的主要属性

属性 含义
Alignment 标题的位置,有taLeftJustify(靠左)、taCenter(居中)和taRightJustify(靠右)
BevelInner 定义Panel内斜面的样式,有bvNone(无斜面)、bvLowered(凹陷)、bvRaised(凸起)、bvSpace(凸起,和bvRaised一样)四种选择
BevelOuter 定义Panel外斜面的样式,和BevelInner的选项一样
BevelWidth 定义内外斜面的宽度
BorderStyle 定义边框的样式,有bsNone(无边框,默认值)、bsSingle(细边框)两种
BorderWidth 指定边框的宽度,可以取为任意整数值
FullRepaint 指定了当Panel调整大小时,对自身的重绘方式,为True时,整个Panel包括斜面边框,都被重绘,否则只有斜面边框内的部分被重绘
Locked 当Panel作为OLE应用程序的工具栏时,使用该属性来指定Panel是否被OLE server的工具栏取代,为True时,则不取代。

Panel组件如此多样,需要花费一些时间来发现所有可能的应用。

下图,显示了不同类型的面板样式示例

0201

以上代码均在Delphi7中测试通过,示例代码下载:不同样式的面板.rar


http://chatgpt.dhexx.cn/article/rqaNy0Ur.shtml

相关文章

[Neck] 空间金字塔池化【池化策略】(Space Pyramid Pool, SPP)模块和路径聚合网络【增强】(Path Aggregation Network, PANet)的结构

文章目录 背景yolo v4 中的空间金字塔池化(Space Pyramid Pool, SPP)模块和路径聚合网络(Path Aggregation Network, PANet)的结构SPP 模块Abstract IntroductionDeep Networks with Spatial Paramid PoolingTraining the NetworkSPP-Net for Image ClassificationSPP-Net for …

芒果改进YOLOv7系列:首发改进特征融合网络BiFPN结构,融合更多有效特征

💡统一使用 YOLOv7 代码框架,结合不同模块来构建不同的YOLO目标检测模型。文章目录 一、BiFPN论文理论部分代码部分YOLOv7+BiFPN在这篇文章中,将BiFPN结构加入到 YOLOv7 结构中 一、BiFPN论文理论部分 EfficientDet: Scalable and Efficient Object Detection BiFPN与P…

算法笔记(六)多尺度特征融合之FPN/PANet

前言 最近论文快deadline了,一直没空更新…今天复习一下多尺度特征融合的常用操作。 1. FPN 特征金字塔 论文:feature pyramid networks for object detection 论文链接 设计思路: 底层的特征语义信息比较少,但是目标位置准确…

PANet:YOLOv4中的路径聚合网络

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶” 作者:Miracle R 编译:ronghuaiyang 导读 非常简单高效的特征金字塔模块。 是最重要的计算机视觉过程之一,它将图像分割成更小的、多个片段,这样的…

PANet 学习笔记

PANet是18年的一篇CVPR,作者来自港中文,北大,商汤与腾讯优图,PANET可看作Mask-RCNN,是在Mask-RCNN基础上做的几处改进。 Introduce 解决问题: 当前实例分割最佳模型Mask-RCNN的信息传播还不够充分&#…

[小样本图像分割]PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment

PANet:基于原型对齐的Few Shot图像语义分割(ICCV19) 论文地址 开源代码 摘要 本文从度量学习的角度来解决Few Shot Segmentation问题,提出一种新的原型对齐网络来更好地利用支持集信息。PANet从嵌入空间内的一些支持图像中学习特定类的原型…

PANet:基于金字塔注意力网络的图像超分辨率重建(Pytorch实现)

PANet:基于金字塔注意力网络的图像超分辨率重建 [!] 为了提高代码的可读性,本文模型的具体实现与原文具有一定区别,因此会造成性能上的差异 文章目录 PANet:基于金字塔注意力网络的图像超分辨率重建1.相关资料2.简介3.模型结构4.…

resnet50、FPN、Panet结构及代码

起初faster-r-cnn,只采用最后一层特作为rpn以及head部分的特征图 ,后来不断改进,有了FPN, 再后来有了Panet,一般来说网络的层数越深它的语义信息越丰富。但是随着网络层数的加深,检测所需的位置信息就会越差…

实例分割--(PANet)Path Aggregation Network for Instance Segmentation

PANet Path Aggregation Network for Instance Segmentation 收录:CVPR2018(IEEE Conference on Computer Vision and Pattern Recognition) 相关: COCO2017/CityScapes instance segmentation 第一 论文提出了PANet,在Mask R-CNN的基础上…

PANet路径聚合

是最重要的计算机视觉过程之一,它将图像分割成更小的、多个片段,这样的话,目标的表示和进一步的分析就变得简单。这个过程有各种各样的应用,从在医学图像定位肿瘤和发展机器视觉中的生物测量识别的目标检测。图像分割过程主要分为…

PANet 实例分割

Path Aggregation Network for Instance Segmentation(PANet) 用于实例分割的路径聚合网络 代码:https://github.com/ShuLiu1993/PANet CVPR2018 Spotlight paper, coco2017实例分割第一名目标检测第二名 当前实例分割最佳模型Mask-RCNN的…

计算机视觉——day95 PANet:基于样本原型对齐的Few-Shot图像语义分割

PANet:基于样本原型对齐的Few-Shot图像语义分割 1. Introduction2. Related workFew-shot segmentation 3. Method3.1. Problem setting3.2. Method overview3.3. Prototype learning(原型学习)3.4. 非参数度量学习3.5. 原型对准正则化(PAR) 4. Experime…

PANet(2018)

关键:根据提议的ROI在每层特征图上都裁剪相应区域的特征,然后池化为指定大小,然后用max将特征融合。使用融合后的特征做预测 Abstract: 神经网络中信息的流通路径很重要。我们提出PANet,通过增加从最底层到最上层的信息传输路径&…

PANet网络简介

个人总结 简介Bottom-up Path Augmentation待解决: Adaptive Feature Pooling待解决: Fully-connected Fusion 先上论文链接: https://arxiv.org/abs/1803.01534 欢迎交流 简介 这篇论文总体上是Mask-Rcnn的改进版本,整体思路是…

PANet[详解]

一、Abstract摘要&Introduction介绍 Abstract 信息在神经网络中的传播方式非常重要。本文提出了一种基于提议的实例分割框架下的路径聚合网络Path Aggregation Network (PANet),旨在促进信息的流动。具体地说,我们通过自底向上的路径增强&#xff…

深度学习论文导航 | 07 PANet:用于实例分割的路径聚合网络

文章目录 一、PANet简介二、整体结构分析2.1 自底向上的路径增强2.2 自适应特征层2.3 全连接融合层 三、性能表现3.1 在COCO上的测试效果3.2 在Cityscapes 和 MVD上的测试效果 四、总结 前言: 同图像识别、目标检测一样,实例分割也是最重要和最具挑战性的…

(论文阅读)实例分割之PANet

PANet 一、论文简介1.1、论文和代码链接1.2、论文基本信息 二、详细解读2.1、摘要2.2、介绍2.3、网络架构2.4、改进与创新2.5、实验结果2.6、使用的数据集 三、总结与思考 一、论文简介 1.1、论文和代码链接 paper:http://xxx.itp.ac.cn/pdf/1803.01534.pdf code:https://cod…

AI大视觉(十七) | PANet(路径聚合网络)

本文来自公众号“AI大道理”。 这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 ​ 目标检测或者实例分割不仅要关心语义信息,还要关注图像的精确到像素点的浅层信息。 所以需要对骨干网络中的网络层进行融合,使其同时…

深度学习-路径聚合网络(PANet网络)

文章目录 1、概括2、介绍3、特征金字塔网络(FPN)4、PANet5、改进点 1、概括 信息在神经网络中的传播方式非常重要。为了促进信息的流动,提出了一种基于提议的实例分割框架下的路径聚合网络Path Aggregation Network (PANet)。具体地说,我们通过自底向上…

Linux | Strace使用

文章目录 1、strace的基本介绍2、strace的使用实例2.1、直接运行结果2.2、strace追踪系统调用(strace ./test)2.3、strace跟踪信号传递2.4、系统调用统计使用-c参数,它会将进程的所有系统调用做一个统计分析展示出来-o选项重定向输出-T选项对系统调用进行计时系统调…